Volume 26 - ICOP & ICPET 2020                   ICOP & ICPET _ INPC 2020, 26 - ICOP & ICPET 2020: 301-304 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mosallanejad M, Haidari G H, Ghasemi M. Optical Simulation of Graphene in Organic Solar Cells Using the 3D-FDTD Method. ICOP & ICPET _ INPC. 2020; 26 :301-304
URL: http://opsi.ir/article-1-2042-en.html
Abstract:   (435 Views)
Graphene can be used in a variety of technologies based on unique optical, thermal, mechanical and electronic properties. In addition, its fabrication process and raw materials are cheap. This study investigates the optical application of graphene in organic solar cells using the FDTD method. Graphene is a two-dimensional sheet of carbon atoms in a burrow configuration, so modeling of its dielectric function is not performed using conventional volumetric methods. The surface conductivity method based on the Kubo model with the possibility of defining different layers of graphene was used in this study. The simulation results show that in the monolayer graphene state instead of ITO and ITO/ PEDOT: PSS, the short-circuit currents were increased by 17.6 and 11%, respectively, compared to the standard cell. Also, as the number of graphene layers increased, the short circuit current in both cases decreased.
Full-Text [PDF 478 kb]   (57 Downloads)    
Type of Study: Research | Subject: Special

© 2021 All Rights Reserved | Optics and Photonics Society of Iran

Designed & Developed by : Yektaweb