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انتشار غیر خطی لیزر با ساختار محدود  ناپایداری مدولاسیون پالس کوتاه لیزر در پلاسمای داغ مغناطیده بررسی شده است. معادله ی -چکیده 

نیروی اثرگذار بر نرخ رشد ناپایداری مدولاسیون مطالعه شده  یبواسطهطولی و عرضی در پلاسما حاصل شده است. تأثیر غیر خنثی بودن پلاسما 

ثیرگذاری زیاد نیروی ی تألا بواسطهاست. نشان داده شده که افزایش شدت لیزر تا مقدار مشخصی سبب افزایش نرخ رشد گشته و در شدتهای با

میدان مغناطیسی خارجی،  ثیر پارامترهای اساسی اعم ازگردد. همچنین تأب افت نرخ رشد میاثرگذار بر خروج الکترونها از ناحیه اندرکنش، سب

 نوع قطبش و پهنای پالس بر ناپایداری تحقیق شده است.

 ناپایداری مدولاسيون ،خطی شرودینگر معادله ی غير ،پلاسما-اندركنش ليزر -كليد واژه

 

Effect of Dynamical Non-Neutrality on the Modulational Instability of a Laser in 

Hot Magnetized Plasma 

Sepehri Javan, Nasser; Ruhi Erdi, Faranak 

Department of Physics, University of Mohaghegh Ardabili, Ardabil, Iran 

Abstract- Modulational instability of short laser pulse in hot magnetized plasma is investigated. Nonlinear propagation equation of 

laser with finite longitudinal and transverse structure in plasma is obtained. Effect of plasma non-neutrality caused by the 

ponderomotive force on the modulational instability growth rate is studied. It is shown that increase in the intensity until specific 

value can increase the growth rate then increase in it causes the decrease in the growth rate because of the exiting of electrons from 

interactional zone via ponderomotive force. Also, effect of essential parameters such as external magnetic field, state of polarization 

and pulse length on the instability are investigated. 
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   لیزر در پلاسمای داغ مغناطیده دینامیکی بر ناپایداری مدوله ای تأثیر غیر خنثی بودن
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1 Introduction 
 

Modulational instability (MI) is one of the 

fundamental phenomena in the nonlinear waves 

theory; the phenomenon that plays major role in 

different kinds of the nonlinear processes such as 

envelope solitons, envelope shocks, freak waves, 

etc. Pondermotive force originated from the 

electromagnetic (EM) wave stimulates low 

frequency perturbations of the electron density; 

then, they interact with the primary high frequency 

EM wave in which the amplitude of the pump 

wave becomes modulated, and the MI of the EM 

wave occurs. This phenomenon was predicted by 

Benjamin and Feir [1] for hydrodynamical waves 

and by Bespalov and Talanov [2] for EM waves in 

the nonlinear media with a cubic nonlinearity. The 

examples of MI from water wave hydrodynamics, 

electrodynamics, nonlinear optics, and convection 

theory can be found in Ref. [3]. The MI of a laser 

pulse in the cold plasma has been studied in 

several works [4]. Already, effect of temperature 

on the MI in quasi-neutral plasma has been 

investigated by Sepehri Javan [5]. In this work, we 

have studied the effect of plasma wake-field 

caused by the ponderomotive force on the MI. 

 

2 Deriving Nonlinear Wave Equation 
 

We consider the propagation of circularly 

polarized EM wave along the external magnetic 

field z00 êB B  in the hot plasma. From 

Maxwell's equation, we can write wave equation as 
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where A  is the vector potential, c is the speed of 

light,  vJ enn )( wq  is the current density of 

electrons of plasma, qn  is the density of electron 

in the quasi-neutral approximation, wn  is the 

density of  electrons caused by wake-field, v  is 

the transversal velocity of electron, and e  is the 

magnitude of electron charge. Now, we write the 

relativistic fluid momentum equation for electrons 
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where zppp    is the momentum of electron, 

22

0

2 /1 cmpe   is the relativistic Lorentz 

factor of electron, 0m  is the electron rest mass, a  

and w  are ambipolar and wake-field scalar 

potentials, respectively, cmeB 00c /  is the 

electron cyclotron frequency, 
Bk  is the Boltzmann 

constant and eT  is the temperature of electrons. 

We consider the vector potential of laser wave as 

following 
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where 00 , k  are the frequency and wave number, 

1,1  denotes the right- and left-hand 

circularly polarized wave, and ),(
~

tzA  is the 

slowly varying amplitude. Inserting “Equation (3)” 

into “Equation (2)”, and assuming phz vv  , we 

can find that “Equation (2)” is satisfied by [5] 
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Where cm0/  pp , 
2

0/ cmeAA  , 

eTke Baa / , 0/ c  and  0n  is 

unperturbed density. Integrating “Equation (5)”, 

we can write 
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Where 
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22 / Tee Vc  

and 0B

2 / mTkV eTe  . Neglecting nonlinear terms 

of zp  and taking into account wake-field potential 

w , we can write 
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where cmzz 0/pp  , and 
2

0ww / cme . 

Now, we write the continuity equation as below 

0]).[()( wqwq 



ennnn

t
v ,                 (8)                 

Sentences such as en v.w  and w. ne v  are weak 

and we neglect them. Also, we neglect from 

spatial-temporal variations of qn .  For weakly 

relativistic laser intensity, we can write 

2/1
2

pe . Finally, continuity equation will 

be as 
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Now, we write Poisson's equation as below 

0

22 / nnk wpw  ,                                            (10) 

where 2
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“Equations (7), (9), and (10)”, yields to 
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The solution to “Equation (11)” is 
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Let us consider a normalized intensity profile as 
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where L , r , sr  are pulse length, radial coordinate 

in cylindrical system, and spot size, respectively 

tVz g . Thus, density of wake-field will be 
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From “Equation (4)”, we can obtain 
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Taking “Equations (6), (14), and (15)” into 

consideration, for the weakly relativistic laser 

intensity, we can derive the nonlinear current 

density as the following 
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where )2/)1(||1()1( 321    AP . 

Substituting “Equation (13)” into “Equation (1)”, 

integrating it with respect to r, saving only second 

order of || A  and exerting the condition of slowly 

varying amplitude, we finally obtain 
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3 Modulational Instability 

 
To derive the dispersion relation for MI, we use the 

well-known method in which we suppose 
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and also )( 0aaNLD  . Using “Equation (18)” in 

“Equation (17)” and linearizing it we can obtain 
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“Equation (21) in “Equation (20)” leads to the 

following dispersion relation 
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The positive imaginary part of frequency in this 

dispersion relation is the growth rate of MI. 

 

4 Numerical Discussions 
 

We have supposed Nd:YaG laser with frequency 
115

0 s1088.1  , 1.00 a  and mrs 15 . 

Figure 1-a shows variation of growth rate with 

respect to K  for three different values of the pulse 

length when 5.20  , 2.0  and 15.00 a . It 

is observed that the growth rate increases with 
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exerting external magnetic field for the right-hand 

polarization. Inversely, for the left-hand 

polarization, growth rate decreases by using 

magnetic field. Also we can see that the growth 

rate with increasing pulse length acquires different 

values. In figure 1-b we have plotted growth rate as 

a function of K for three different values of the 

laser pulse intensity with 100  , 2.0  and 

20L . In this case growth rate increases with 

the increase of the laser pulse intensity until 

specific value, then increase of the intensity causes 

decrease of the growth rate. 

 

5 Conclusions 
 

We have investigated the MI of short laser pulse in 

hot magnetized plasma. Effect of external 

magnetic field, state of polarization, pulse length, 

and laser pulse intensity on the instability has been 

studied. It is observed that existence of magnetic 

field enhances the growth rate of the instability for 

the right-hand polarization. Inversely, for the left-

hand polarization, magnetization of plasma causes 

the decrease of growth rate. The growth rate 

increases with the increases of the laser pulse 

intensity until specific value, then because of the 

exiting of electrons from interactional zone via 

ponderomotive force, increase of the intensity 

causes decrease of the growth rate. 

 

 

 
 

 

 

 

 

References 
 

[1] T. B. Benjamin and J. E. Feir, “The 

disintegration of wave trains on deep water”, J. 

Fluid. Mech. Vol. 27, No. 3, pp. 417-430, 1967. 

[2] V. I. Bespalov and V. I. Talanov, “Filamentary 

structure of light beams in non-linear liquids” 

Pisma JETP. Vol. 3, pp. 471, 1966 [JETP Lett. 

Vol. 3, pp.307, 1966]. 

[3] V. E. Zakharov and L. A. Ostrovsky, 

”Modulation instability: The beginning”, Physica 

D. Vol. 238 ,No. 5, pp. 540-548, 2009. 

[4] C. E. Max, J. Arons, and A. B. Langdon, “Self-

modulation and self-focusing of electromagnetic 

waves in plasmas”, Phys. Rev. Lett. Vol. 33, pp. 

209-212, 1974. 

[5] N. Sepehri Javan, “Competition of circularly 

polarized laser modes in the modulation instability 

of hot magnetoplasma”, Phys. Plasmas. Vol. 20, 

No. 1, pp. 012120-1-012120-6, 2013. 

 

Figure 1: growth rate  as a function of  K  for (a) 

three different pulse length and 0,1  (b) three 

different laser pulse intensity and 1 . 
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