[ Downloaded from opsi.ir on 2025-07-13 ]

Opticy

7™ Iranian Conference On Photonics Engineering
» Ve 13-15 January 2015, Shahid Beheshti University

z :” :. nics
‘b!&‘ The 21 Iranian Conference on Optics & Photonics & ¢ mmges, /ﬂ

(Bl yo (Sl o Job shls oud S (eied Heby sla)l g ladone
gs'.u’) GGJGAAM ‘o.b‘)’)lfl_; Oy

Olpl Gyl o5l s e olBiily G 3ud yisu

o> g (B (ZDW) oo (Suibly b zge Job sl)lo a5 1) oul 36 (PCF) (Jgigd 5ol slayli 5L rdsl sl o ol )0 - ouss
3 oS (o0 3w dls (FDFD) (ouilS )8 0395 10 Sgumo Juoldi (g dy ool Colud v (g lado oy g Aol Jo (39 b 31 cadiud 395 Job
20 8 S sl 1A IS o i U Jgb 50 /A a5 p5 9 1gn sb 0 im ylad B 3 coud 36 sl PCF (,Lis Lo (glo ol )y 45 Lil
2 a5l 390 (S pé Sl 0 ) Sl Z Jsb cums pr (Fbl gl eyl 3280 5L, wlo (plply WS (o0 i U Jgb
~ 0 Sl ja5 0o S T i1 gl (sl e (el bulg; 9 (g3l ad A 9 d il polie (glp 1) ZDW (Job (Sounls cllio o
2loddgi pwiared g b LAl G5le dd (g2 (2B ) Glp el 09290 (25T L L g3 sl @319 )0 &5 Al (| LS oS

.\))'O m‘ X W) &S}L; ‘Sl& PCF J° 6)&0‘)% 5.’09-63 9 )L’MH

(S Bk Ol 5l SU e onilS 8 059> )3 dgazme SO ((Seisd 15k sla)l —o3ly S

Modelling of zero-dispersion wavelength decreasing tapered photonic crystal
fibers

Hassan Pakarzadeh, Seyed Mostafa Rezaei

Physics Department, Shiraz University of Technology, Shiraz, Iran

Abstract- In this paper, we investigate for the first time the dispersion properties of photonic crystal fibers (PCFs) with a
continuously-decreasing zero-dispersion wavelength (ZDW) along their length, via solving the eigen-value equation of the guided
mode using the finite-difference frequency domain (FDFD) method. Since the structural parameters such as air-hole diameter d and
the pitch 4 of the microstructured cladding change along the tapered PCFs, dispersion properties change with the fiber length as
well. Therefore, it is important to know the exact behaviour of such characteristics along z which is necessary for nonlinear optics
applications. We simulate the z-dependency of the ZDW along the tapered PCFs for various d and 4 and propose useful analytical
relations for describing such characteristics. The results of this paper which are in a very good agreement with the available
experimental ones, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum
generation and parametric amplification in tapered PCFs.
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1 Introduction

Photonic crystal fibers (PCFs) are typically made
of single material such as silica glass, with an array
of microscopic air holes running along their length
[1]. Solid core or index guiding PCFs which guide
light by modified total internal reflection (TIR)
have attracted great attention in recent years
because of their unique properties that are not
possible in conventional optical fibers [2].

A desirable property of PCFs is that, the additional
design parameters of the air-hole diameter d and
the hole-to-hole distance (pitch) A, offer much
greater flexibility in the design to get desired
dispersion and nonlinear characteristics [3].

A PCF can be tapered to achieve even smaller core
than in an un-tapered PCF, and thereby reducing
the required fiber length and the pump power for
observation of efficient nonlinear effects such as
supercontinuum generation [4]. In addition to the
nonlinear optics, tapered PCFs have found
interesting applications in sensing, refractometry,
etc. [5-7]. Unlike the un-tapered PCFs where their
parameters such as zero-dispersion wavelength
(ZDW) are constant along the fiber (z-
independent), these parameters are changed with z
in tapered-PCFs [4]. Therefore, it is necessary to
know the exact dependency of such parameters on
z, when simulating the pulse propagation or
investigating nonlinear phenomena in tapered
PCFs [8].

In this paper, we solve the eigen-value equation for
the tapered PCF [4] using the finite-difference
frequency domain (FDFD) method to calculate the
ZDW along the fiber and obtain the useful
relations for describing its z-dependency. We also
investigate the impact of air-hole diameter and
pitch on such parameters. The obtained results
which are in a very good agreement with
experimental ones are important for accurate
simulations of pulse propagation and nonlinear
phenomena in the tapered PCFs where ZDW and
the dispersion slope depend on length.

2 Theory and Simulation Method

If we start from the Maxwell equations for the
electric field E and the Magnetic field H in a
dielectric medium such as an optical fiber (in the
absence of electric charge and current), after a few
manipulations in the frequency domain we obtain

the full-vectorial wave equations for the H, and
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H, components of the field which can be written
as:

VIH, (xy)+e(x y)koH, (X y) +

1 88(X,y) 6Hy(xvy)_aHx(va)J: 2H
S0y oy ( x o BH(XY)
1)
VIH, (x y) +e(x y) ke H, (X, y) +
1 Oe(x,y)[oH, (xy) oH,(xy)) _
e(xy) o ( oy OX J_ AR Bey)
(2)

where H, and H are x- and y- components of

g . 2r .
the magnetic field, respectively; and k, =/1—7r|s
0

the free space wave number and 4, is the vacuum

wavelength of the light. Also, &(X,y) is the

permittivity of the dielectric medium and f is the
propagation constant of the guide mode.

By applying the finite-difference approximation
we can convert above equations into a humerical
eigenvalue problem of the form [9]:

¢H = p°H 3
where, ¢ is commonly referred to as the

discretization matrix of the finite-difference
problem which depends on the parameters such as
permittivity, light wavelength, and step sizes of the
grid denoted by Ax and Ay in the x- and y-
directions, respectively. The complex propagation
constant 3 can be solved out quickly and accurately
in MATLAB using a sparse matrix solver [9, 10].
Therefore, we used the full-vectorial finite-
difference method with the perfectly matched layer
(PML) boundary conditions [11] to simulate
dispersion characteristics of the tapered PCF. For a
given geometry of the PCF with a fixed d and A,
one can solve Eg. (3) and obtain the mode
propagation constant 3 through which the effective

B

index of the mode is given by n, =-—. To obtain
0
the dispersion curve of the PCF, one should repeat
the calculations for a wide range of wavelengths to
get the corresponding effective index for each
wavelength. Finally, the dispersion is calculated
using the relation as below [12]:
A 0°Re(ng)

D=7 @
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where c is the light speed and Re stands for the real
part.

3 Results and Discussion

Fig. 1 shows the schematic illustration of a tapered
PCF which is described by parameters as A,
A;and z;, where A= A(0) is pitch of the un-
tapered fiber, A;=A(z;) is the pitch at the
tapering waist, and z; is the length from the start
of the tapering to the tapering waist. It is assumed
that the relative size d/A is constant along the
tapering. This assumption seems reasonable if the
PCF is tapered "fast-and-cold" [5]. To get the best
fit to the experimental results presented in Ref. [4],

we propose an analytical relation for the variation
of the pitch A along the taper length z as:

A “%

A@) = (A, — A )(—TJ +A; 220,  (5)
AO

where the border between un-tapered fiber and

tapered fiber region is at z=0 and u is the slope

parameter which controls the slope of the tapering

in Fig. 1. for A;=48 pm, A;=1.1 pm, and

Z; =12m. The slope parameter is chosen as pu=5 to
obtain the best fit to the experimental data.

Tapered length

z=0 z=1z

Fig.1. Schematic illustration of the tapered PCF with the
pitch A, on the wider end and the pitch Ay on the

narrower end. Z;is the length from the start of the
tapering to the tapering waist.
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Fig.2. Z-dependence of the ZDW along the tapered PCF

of Ref. [4] obtained via our FDFD simulation (red

dashed line), and approximate method (green dotted
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line) where the PCF structure is simplified to a silica
strand in air. The blue solid line corresponds to the
analytical result proposed by Eq. (5). d/A is assumed to
be 0.96 and other simulation parameters are

Ay=4.8pm, A;=1.1pm, Z; =12m, and p=5.
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""" d/A=0.6 (Analytical)
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d/A=0.9 (Analytical)
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""" d/A=1.0 (Analytical)
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Fig.3. Zero-dispersion wavelength as a function of
tapered PCF length for different hole-to-pitch ratios.
The solid lines with and without symbols are related to
the FDFD simulations and analytical formula (Eg. 6),
respectively. Simulation parameters are the same as
those in Fig. 2.

As it was discussed in Ref. [4] and is seen in Fig.
2, the variations of ZDW along the tapered PCF
was obtained using silica strand model (green
dotted line), since the ratio of the air-hole diameter
to the pitch (d/A) was approximated by 1. This
means that the microstructure of the PCF and the
related air holes was ignored and the cladding was
approximated by air. However, the exact solution
which is based on the FDFD method can be
different to that of the approximate solution as
shown by the red dashed line in Fig. 2. Moreover,
we propose the analytical relation for the best fit to
the FDFD results which is given by:

23,
ZDW(z) = (zDW, — zDw, | Z2W +zDW. (6)
ZDW,

where ZDW, and ZDW; are the zero-dispersion
wavelengths at the wider end (z=0) and at the
narrower end (z=12z;) of the tapered PCF,

respectively. Since d/A ~1, both the approximate
and the exact (FDFD) results are very close to each
other. In addition, the analytical results have a very
good agreement to the FDFD ones which confirms
the applicability of Eq. (6).

Naturally, for values of hole-to-pitch ratios less
than 1, the ZDW behaviour versus the tapered
length cannot be described by the approximate
method and hence the FDFD method should be
used. Fig. 3 shows ZDW variations along the
tapered PCF length for different d/A using FDFD
simulations (solid lines with symbols). As it is
seen, the value of ZDW decreases as d/A increases
and for large ratios when d/A =1, ZDW approaches
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the approximate value corresponding to the silica
strand model (see Fig. 2). In addition to the FDFD
results, we provide the analytical results (solid
lines without symbols) obtained by the following
formula:

10A Zd
ZDW(z) = (ZDW, —ZDWT)(ZDWTJ “ezow. (7)
ZDW,

In fact, Eq. (7) is a general form of Eq. (6), since in
Eq. (6) we assumed that d/A ~1, therefore 2pu~10.
As it is seen in Fig. 3, the analytical results match
very well to the FDFD one especially for long z
(longer than 4m). However, for shorter lengths the
discrepancy is seen between both results which is
less for higher values of d/A. In general, our model
well  describes the characteristics of ZDW
decreasing tapered PCFs.

4 Conclusion

We have investigated the evolution of zero-
dispersion wavelength (ZDW) along the tapered
PCFs using the FDFD method. The results of our
simulations were compared to those of
experimental and a very good agreement was
obtained. As the geometrical parameters (such as
the air-hole diameter and the pitch) decrease along
the tapered PCFs, the ZDW decreases as well. We
also proposed analytical relations for the z-
dependence of the pitch and ZDW which are useful
for simulation and investigation of nonlinear
phenomena in tapered PCFs.
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