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Soliton Dynamics of Saturable Absorber in Colloidal Nanoparticles
Morteza A. Sharif, Bijan Ghafary
School of Physics, Iran University of Science and Technology, Tehran, Iran

Abstract- This paper presents a simple, but comprehensive solution of Haus equation — to describe the dynamics of mode-locking- to
model Saturable Absorption in colloidal nanoparticles. Soliton formation is considered as the main mechanism of pulse shaping.
Non-ideal gas model for nanosusensions nonlinearity is utilized. Saturable Absorber procedure is detected as passive mode-locking.
The results show a good matching with the experimental observations in which the nanosuspensions have introduced as suitable
media for Saturable Absorption.
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1 Introduction

Nanoparticles and Colloidal nanosuspensions are
well-known for their high nonlinear response even
at optically low intensities; their high performance
of controlling light with light predicts the
promising future of advances in all-optical devices
and systems. Recently, Alexander Shamray and
his group have experimentally shown that the
optical bistabiity in colloidal solution of
LaFs:Er,Yb nanocrystals is truly attainable at low
optical power[1]. In spite of multiple studies on
nanosuspensions  nonlinearity and  Saturable
Absorption (SA) via nanosuspensions [2-5], there
seems to be a lack of theoretical model based on
intracavity dominating equations to describe the
dynamics of SA through these media.

2 Theoretical description of problem

Theoretical dynamics of pulse-shaping can be
described by the Haus equation of mode-locking
[6]:
T OA(T.t) _
oT (1)
AL o°
-iD = +iy|A| A{g—l +Dg?—q(l',t)}A(T,t)

Where, A(T ,t)is slowly varying field envelop, T
is time scaled to one cavity round trip T, t is
time scaled to pulse duration, D is Group Velocity
Dispersion (GVD) and D is gain dispersion;
y =%, is the nonlinear coefficient required for

Self Phase Modulatiom (SPM) whereas 4,is the
center wavelength of the pulse, n, is the nonlinear
refractive index of nanosuspension; g and | are
the gain and loss of the cavity respectively; q(T ,t)

is the response of the absorber. For simplicity,
g -1 is substituted by the quantity NET gain. It
should be noted that intracavity loss | is quite
different from the loss due to absorption of the
nonlinear media; the latter is postponed to be
discussed. The corresponding pulse energy can be
written as:

TRA
E=[, JAT.[ d )

2.1  Soliton Regime
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Soliton formation is considered as the dominant
pulse-shaping mechanism. The function to describe
the pulse shape is given below:

f (t) =% sech(t) (3)
¢ is pulse width which is defined as the full-width
at half-maximum (FWHM) of the soliton. Soliton
formation is a consequence of the balance between
GVD and SPM inside the cavity; this in turn leads

D .
u=£. The equation can be
T 47
written as the pulse width related to the energy of
the pulse:

4|D

T= M 4

yE
On the other hand, energy rate equation is proved
to be written as[6]:

oE

to the equation

TREZZQNET _ZQ(E) (5)
Where:
g
Oner = OYNE (6)
1+—

E

Through the steady state, the ratio between
intracavity GVD and gain dispersion is set to be at
a certain value[6].

It is inevitable to introduce TPA (Two Photon
Absorption) loss through the calculations in order
to measure Minimum Pulse Energy (MPE) needed
for the desired case of single pulse mode locking.
Equation describing MPE is obtained according to

[6]:
Emin,SSA =3 % Es (7)
\4 Xrpa
Here, q,, is the maximum absorber response,

a,rPAoc%iS the loss pertained to TPA. The

quantity « is the aforementioned absorption of
nonlinear medium due to Rayleigh scattering.

2.2 Non-ideal gas nonlinearity model of
nanosuspensions

According to this approach, the first order
nonlinear refractive indices of n, is yielded as:

n2k
n, = 8
? {1+2(BzNp)f0+3(B3Np2)f02] ®)
In these equations, n, is artificial Kerr
nonlinearity, B,and B, are second and third
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Virial coefficients, v, is the volume of
nanoparticle, f, is the field free background filling

factor of the colloidal nanoparticles.
The first nonlinear loss of TPA due to Rayleigh
scattering is given by

Op,
I, 1+2(B, V), +3(B, V) )
the initial nanoparticle density inside the colloid,
I, pertains to the light intensity keeping the limit
of exponential model for nonlinearity and
1287°%n¢ (a ) (m?-1Y . .
oc=——2|— > is scattering cross
3 2 ) \m?+2

section; n,is background refractive index of
colloid and m =n_ /n,is the ratio of nanoparticles
refractive index to n, .

a=1 where p, is

3 Analytical Results and Discussion

For a sinusoidal response of the absorber[8], one
pulse operation is assumed. Equation (9) performs
a simple but comprehensive analytical solution of
the equation (5) to describe the dynamics of soliton
regime inside mode-locked cavity for successive
cavity round trips.Once the energy inside the
cavity is increased, SA response will be
strengthened and the intracavity energy will be
diminished to its primary value. This implies that
the field envelop inside the cavity is passively
mode-locked.

E(T)=4

gO,NET

1+E7 9)

S

rpp (1-Qy COS(ZE (T —TR))NE(T —T¢)

The iterative form of equation (9) explicates the
state of the system as a function of q,, and E, . For
sufficiently small values of q,, and E,, cw stable

operation will be provided if the gain of the
medium is adequate. To ensure that high efficient
laser cavity is attainable, q,, should be increased;

afterward, above a certain threshold value of E_,

the system transforms to mode-locking state.
Figure 1 shows system transition from the primary
cw state toward the chaotic state as q,, and E_ are

increased.

3.1 Effect of Nanoparticle characteristics on
the system state

Experimental measured data are taken from Majles
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Ara, et al.[3]. Calculations based on the presented
model show that for the nanoparticles density order
of 10 times larger than what is assumed, steady
state mode-locking will be wvanished and the
system will experience a fully chaotic regime.
Conversely, for 10 times lower order steady state
mode-locking regime will no more be available.

3.2  MPE required for passively mode-locking

Equation (7) stands for MPE required for steady
state mod-locking. Figure 2.a shows the
dependence of MPE on the average diameter of
nanoparticles. It can be seen that there is an
optimum point in which the MPE is increased
over/under the value. The procedure offers to use
small sizes of nano-scaled particles. Indebted to the
large values of « and y pertained to

nanosuspensions, researchers believe/experience
that passive mode-locking is attainable at
extremely low powers [4-5]. Infinitesimal
experimental reported values of D inside
nanosuspensions intensify this opinion ( refer to
equation (8)).

25

=

EMau)

S lau)
Figure 1: All available states of the system inside the
cavity as a function of E,, a) cw steady state,

gy, =0.2, b) Bistable state (Inset shows how the system
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transforms to upper stable state), g,, =0.3, ¢) Chaotic

state (Inset shows how the system has instability over
time), q,, =0.6.

4 Conclusion

A simple, but comprehensive solution of Haus
equation is presented. Using the Non-ideal gas
model of nonlinearity for colloidal nanoparticles, a
model is constructed to investigate Saturable
Absorption inside nanosuspensions. These results
seem to be truly matched with experimental
observations.

u)

MPE (a
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Figure 2: MPE vs. nanoparticles size a)for assumed

nanoparticles density b) for 10 times higher
nanoparticles density
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