

The ۲۸th Iranian Conference on
Optics and Photonics (ICOP ۲۰۲۲),
and the ۱۴th Iranian Conference on
Photonics Engineering and
Technology (ICPET ۲۰۲۲).

Shahid Chamran
University of Ahvaz,
Khuzestan, Iran,
Feb. ۱-۳, ۲۰۲۲

سنتز نانوذرات TiO_2 با روش سل-ژل برای ساخت سلول‌های خورشیدی حساس شده با رنگدانه طبیعی میوه جمبو

ماندانا شادکام^۱، تهمینه جلالی^۱، محسن محربی^۱ و شهریار عصفوری^۲

^۱گروه فیزیک دانشگاه خلیج فارس، بوشهر، ایران؛ ^۲گروه مهندسی شیمی دانشگاه خلیج فارس، بوشهر، ایران

چکیده- در این مطالعه، نانوذرات TiO_2 به منظور دستیابی به بلورینگی بالا و اندازه کوچک ذرات، به روش سل-ژل سنتز شده و سپس مشخصه‌های نانوذرات‌های تهیه شده به وسیله پراش پرتو ایکس (XRD) و طیف سنج مادون قرمز (FT-IR) ارزیابی شدند. سلول خورشیدی FTO (اکسید قلع آلاییده شده با فلورئور) تحت عنوان فیلم اکسید نیمه رسانا ساخته شد. همچنین در این تحقیق، برای کاهش هزینه‌ها، از رنگدانه طبیعی استخراج شده از میوه جمبو استفاده شده است. پارامترهای فتوولتاویک تحت نور خورشید شبیه سازی شده با شدت تابش 100 mW/cm^2 و تابش استاندارد ($AM1.5$) اندازه گیری شد. نتایج نشان داد بازده تبدیل انرژی 1.36% و سایر مشخصه‌های فتوولتاویک شامل جریان مدار کوتاه، ولتاژ مدار باز و فاکتور پر شدن به ترتیب 5.88 mA/cm^2 ، 0.6235 V ، 0.3706 V می‌باشند.

کلید واژه- رنگدانه طبیعی، روش سل-ژل، سلول‌های خورشیدی رنگدانه‌ای، فتوآند، نانوذرات TiO_2

Synthesis of TiO_2 nanoparticles using the sol-gel method to fabricate dye-sensitized solar cells with natural *Syzygium Cumini* fruit dye

M. Shadkam^۱, T. Jalali^{۱*}, M. Mehrabi^۱, and S. Osfouri^۲

^۱Department of Physics, Persian Gulf University, Bushehr, Iran; ^۲Department of Chemical Engineering, Persian Gulf University, Bushehr, Iran, *jalali@pgu.ac.ir

Abstract In this study, TiO_2 nanoparticles were synthesized using the sol-gel method to obtain a highly crystalline and small particle size of TiO_2 ; the produced nanoparticles were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Dye-sensitized solar cell (DSSC) was fabricated with a layer of TiO_2 nanoparticles paste deposited on FTO (fluorine-doped tin oxide) glass substrate as a semiconductor oxide film. Also in this study, extracted natural dye from *Syzygium Cumini* fruit was used for decrease the cost. The photovoltaic parameters were measured using the solar simulator under an incident light intensity of 100 mW/cm^2 and air mass ($AM1.5$). The results show power conversion efficiency (η) of 1.36% and other photovoltaic parameters include short circuit current density (J_{SC}), open-circuit voltage (V_{OC}) and fill factor (FF) are 5.88 mA/cm^2 , 0.6235 V and 0.3706 respectively.

Keywords: Dye-sensitized solar cells, Natural dye; Photoanode, Sol-gel method; TiO_2 nanoparticles

۱. Introduction

Dye-sensitized solar cells (DSSCs) have attracted considerable attention due to their low cost and easy fabrication with relatively high photo-conversion efficiency. O'Regan and Grätzel fabricated TiO_2 based DSSC for the first time in ۱۹۹۱ [۱]. A typical DSSC is made up of semiconductor oxide film for attaching dye molecules, a counter electrode with deposited layer of platinum and an electrolyte solution. Sun light is absorbed by dye molecules and then electrons are injected to the conduction band of semiconductor oxide. Meanwhile oxidized dye molecules are regenerated by electrolyte solution also electrolyte ions regenerated through counter electrode. Semiconductor oxide film is the heart of DSSCs and the most studied materials are TiO_2 , ZnO and SnO_2 which TiO_2 has announced as the best one due to its unique properties and various advantages such as photochemical stability, high band gap (~۳.۲ eV), high photoconductive capability, availability, and non-toxicity. TiO_2 exists in three main phases, namely, rutile, anatase and brookite. However rutile phase is more thermal stable, anatase phase is the first choice for DSSCs applications due to its higher band gap energy [۲, ۳]. Various synthesis routes have been reported for nanocrystalline TiO_2 such as sol-gel, hydrothermal, solvothermal and etc. which sol-gel is one of the most used methods due to highly crystalline and small size of synthesized nanoparticles [۴-۷]. The sol-gel is a simple, fast, and cost-effective method, which has received much attention due to providing controlled grain size as well as particle morphology, achieving superior purity, compositional homogeneity, low processing temperature, and production with simple equipment. In this work, natural dyes were used to reduce costs and TiO_2 nanoparticles were synthesized using sol-gel method. Then, DSSC was fabricated based on synthesized TiO_2 and photovoltaic performance was evaluated under AM ۱.۰ G by measuring current-voltage curves and calculating η , V_{oc} , J_{sc} , and FF .

۲. Experimental

۲.۱. Materials

The Titanium (IV) isopropoxide ($\text{Ti}[\text{OCH}(\text{CH}_3)_2]_4$), ethanol ($\text{C}_2\text{H}_5\text{OH}$), distilled water, nitric acid (HNO_3), polyethylene glycol ($\text{C}_2\text{H}_4\text{O}_n$), acetonitrile ($\text{C}_2\text{H}_5\text{N}$), potassium iodide (KIO_3) and iodine (I_2), ethylene glycol ($\text{C}_2\text{H}_4\text{O}_2$), platinum (Pt). *Syzygium Cumini* fruit and fluorine-doped tin oxide (FTO) conductive glass (sheet resistance ۱۰Ω/sq).

۲.۲. Preparation of TiO_2 nanoparticles paste

In this method, TiO_2 nanoparticles were synthesized in anatase phase. First, titanium (IV) isopropoxide was added to ethanol under stirring and after few minutes, distilled water was added. Then adding few drops of nitric acid was done to control the pH of prepared solution. To form sol, solution must be stirred vigorously for ۲۰ min, then aging for ۲۴ hrs to obtain gel. For preparing TiO_2 nanoparticles from gel, it must be dried at ۱۲۰ °C then, sintered at ۴۵۰ °C to get white powder [۸]. The procedure of TiO_2 synthesis is shown in Fig. ۱. Finally, TiO_2 powder and polyethylene glycol were mixed into the mortar until uniform paste was obtained [۹].

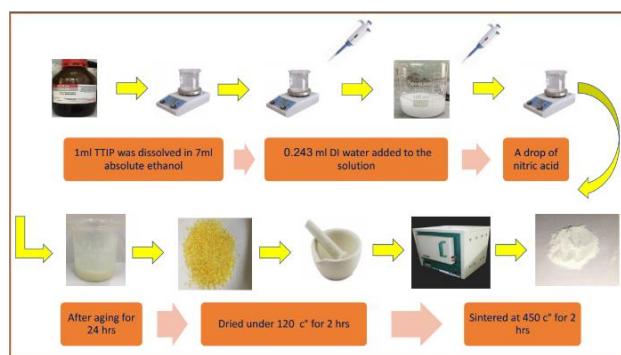


Fig. ۱: The schematic of the synthesis route for TiO_2 via sol-gel method

۲.۳. Preparation of natural dye and electrolyte

It was extracted from fresh *Syzygium Cumini* fruit and ethanol was used as solvent [۱۰, ۱۱]. For preparation of electrolyte solution, first, ۱۰ ml acetonitrile was added to ۲.۰ ml ethylene glycol under stirring. Subsequently, ۰.۰۳۷۰ g potassium iodide and ۰.۰۳۳۰ g iodine was added

respectively. Prepared electrolyte was stirred until homogenous solution appeared [۹].

۲.۴. Fabrication of DSSC

First, FTO glass substrate ultrasonically cleaned in deionized water, hydrochloric acid, acetone and ethanol respectively and dried at ۶۰ °C. Afterwards, the prepared TiO_۲ paste was coated on FTO glass, to make photoanode, by doctor blade method and after a few minutes it was heated at ۱۲۰ °C then, calcinated at ۴۵۰ °C. After cooling, the photoanode was immersed in dye solution and kept in darkness for ۲۴ hrs. For the counter electrode, a thin layer of platinum was deposited on another FTO glass substrate. Finally, photoanode and counter electrode were combined together and sealed using surlyn sheet and electrolyte was injected between them. The active area of the electrode was ۰.۲۰ cm^۲. The photograph of the fabricated DSSC is given in Fig. ۱.

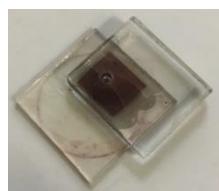


Fig. ۱: The fabricated DSSC

۳. Results and Discussion

Figure. ۲ shows the UV-vis absorption spectra in the range of ۳۰۰-۸۰۰ nm, which is shown a peak in ۳۸۰ nm. The absorption peaks in the visible region become sharper and the absorbance increases. The FT-IR spectroscopy of the sample were studied which were synthesized via sol-gel method in the range of ۴۰۰-۴۰۰ cm^{-۱} and shown in Fig. ۳. In this curve, peaks at ۴۲۰ cm^{-۱} and ۷۳۲ cm^{-۱} are for O-Ti-O bonding in anatase morphology. The bands centered at ۲۰۴۷ cm^{-۱} and ۳۱۸۲ cm^{-۱} are the characteristic of surface-adsorbed water and hydroxyl groups. Existing fine peaks also relate to the residual components of organic matter and reactions between water and carbon dioxide, while

the last peak is attributed to the TiO_۲. As well, XRD pattern was done to determine crystal structure of the prepared TiO_۲ powder. The XRD peaks in the range of $\gamma\theta$ from ۲۰°-۹۰°, where the peaks in ۲۰, ۴۱۸°, ۳۷, ۲۰.۸°, ۳۸, ۱۴۳°, ۴۸, ۲۲۶°, ۵۴, ۳۴۴°, ۵۵, ۲۹۲°, ۶۳, ۰.۸۰°, ۷۰, ۰.۸۶°, ۷۰, ۰.۷۵۰°, and ۸۳, ۱۱۴° can be attributed to the ۱۰۱, ۱۰۳, ۱۱۲, ۲۰۰, ۱۰۰, ۲۱۱, ۲۰۴, ۲۲۰, ۲۱۰, and ۲۲۴ crystalline structures of anatase. This pattern is represented in Fig. ۴.

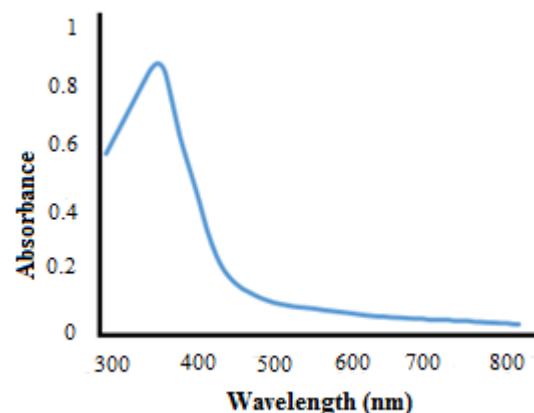


Fig. ۲: The UV-visible of the fabricated DSSC

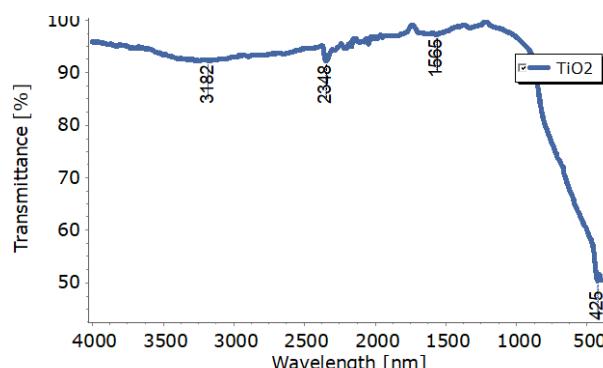


Fig. ۳: The FTIR of the fabricated TiO_۲ nanoparticles

The current density-voltage (J-V) characteristics is represented in fig. ۴ and photovoltaic parameters of fabricated DSSC are calculated from this curve with incident light intensity of ۱۰۰ mW/cm^۲ and AM ۱.۵. The photovoltaic parameters of the fabricated DSSC efficiency of fabricated cell is ۱.۳۶% whereas calculated photovoltaic parameters such as short circuit current density (J_{SC}), open circuit voltage (V_{OC}) and fill factor (FF) are ۰.۸۸ mA/cm^۲, ۰.۶۲۳۰ V and ۰.۳۷۰.۶, respectively and with good agreement with previous works [۸, ۹]. The results approved the existence of free carriers by light

photons absorption. It is expected to enhance the efficiency of dye adsorption by increasing the grain boundaries of the produced TiO_2 using sol-gel method.

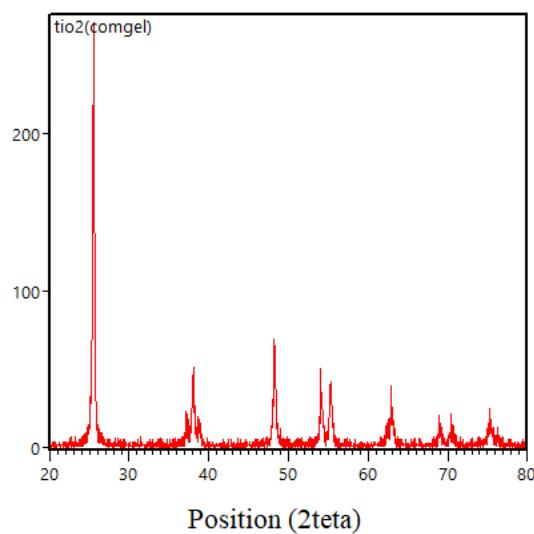


Fig. ۰: Powder XRD pattern of the TiO_2 nanoparticles

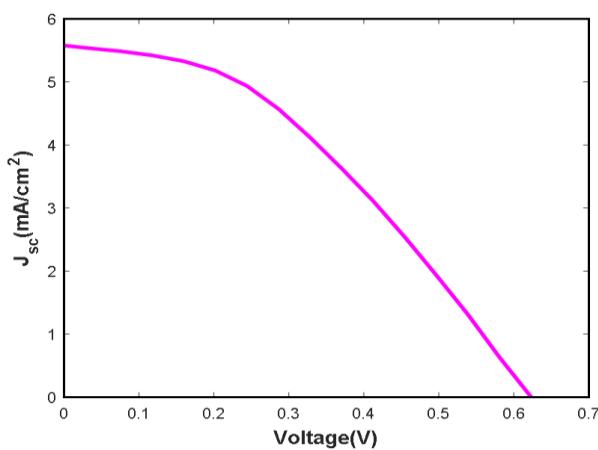


Fig. ۱: current density–voltage curve of the fabricated DSSC

۴. Conclusion

TiO_2 nanoparticles have been successfully synthesized using sol-gel method. The synthesized TiO_2 nanoparticles were characterized using XRD, and FTIR techniques. The produced nanoparticles were used as a part of photoanode in the DSSCs. The pastes were prepared with simple method and used in the photoanode of the fabricated DSSCs. The crystallography of the pastes, using X-ray illustrated the existence of TiO_2 in the anatase phase in all samples. The fabricated TiO_2 -based DSSCs demonstrated a light to the electricity conversion

efficiency of ۱.۱۳% with a fill factor of ۳۷.۵%, open-circuit voltage of ۰.۷۲ V, and short-circuit current of ۳.۷ mA/cm^۲.

References

- [۱] O'Regan, B., & Grätzel, M. (۲۰۱۸). A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO_2 Films. In Renewable Energy (pp. ۲۰۸-۲۱۳). چشم‌انداز.
- [۲] Sharma, A., Karn, R. K., & Pandiyan, S. K. (۲۰۱۴). Synthesis of TiO_2 nanoparticles by sol-gel method and their characterization. J Basic Appl Eng Res, ۱(۹), ۱-۵.
- [۳] Li, G., Richter, C. P., Milot, R. L., Cai, L., Schmuttenmaer, C. A., Crabtree, R. H., ... & Batista, V. S. (۲۰۱۹). Synergistic effect between anatase and rutile TiO_2 nanoparticles in dye-sensitized solar cells. Dalton Transactions, (۴۰), ۱۰۰۷۸-۱۰۰۸۰.
- [۴] Vijayalakshmi, R., & Rajendran, V. (۲۰۱۲). Synthesis and characterization of nano- TiO_2 via different methods. Archives of Applied Science Research, ۴(۲), ۱۱۸۳-۱۱۹۰.
- [۵] Maurya, I. C., Senapati, S., Singh, S., Srivastava, P., Maiti, P., & Bahadur, L. (۲۰۱۸). Effect of Particle Size on the Performance of TiO_2 Based Dye-Sensitized Solar Cells. ChemistrySelect, ۳(۳۴), ۹۸۷۲-۹۸۸۱.
- [۶] Jeng, M. J., Wung, Y. L., Chang, L. B., & Chow, L. (۲۰۱۳). Particle size effects of TiO_2 layers on the solar efficiency of dye-sensitized solar cells. International Journal of Photoenergy, ۲۰۱۳.
- [۷] Kumar, K. A., Subalakshmi, K., & Senthilvelan, J. (۲۰۱۶). Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications. Journal of Solid State Electrochemistry, ۲۰(۷), ۱۹۲۱-۱۹۳۲.
- [۸] Golshan, M., Osfouri, S., Azin, R., & Jalali, T. (۲۰۲۰). Fabrication of optimized eco-friendly dye-sensitized solar cells by extracting pigments from low-cost native wild plants. Journal of Photochemistry and Photobiology A: Chemistry, ۳۸۸, ۱۱۲۱۹۱.
- [۹] Gu, P., Yang, D., Zhu, X., Sun, H., Wangyang, P., Li, J., & Tian, H. (۲۰۱۹). Influence of electrolyte proportion on the performance of dye-sensitized solar cells. AIP Advances, ۹(۱۰), ۱۰۰۲۱۹.

[۱۰] Hambali, N. A. M. A., Yusof, N. R., Norhafiz Hashim, M., & Mat Isa, S. S. (۲۰۱۰). Dye-Sensitized Solar Cell Using *Syzygium Cumini* Fruit as Natural Dye Utilizing Titanium Dioxide. In *Applied Mechanics and Materials* ۵۰۴-۵۰۵, ۱۱۷۷.