An Investigation of the Modes of Radiation in a Symmetric Container in Equilibrium and the Possibility of Photon Condensation in an Extent Larger than Optical Microcavity

Fatemeh Saeb, Mohammad Eatesami

Physics Department, Yazd University, Yazd, Iran

Abstract- We introduce a photon container with suitable characteristics and boundary conditions for photon ordering and in the linear approximation solve the Helmholtz equation for vector potential in spherical coordinates. The polar and radial dependences of the obtained relations for the eigenmodes advise a likelihood condensation. In addition the successive zeros of the radial component and polar component of the energy current density lead to photon confining in a configuration of photon bundles. For the photons in every bundle conditions comparable with their condition in an optical microcavity are providable so that their dispersion relation becomes non-relativistic and the photons may attain number conserving thermal equilibrium.

Keywords: Vectorial Helmholtz Equation, Energy Current Density, Stationary and Equilibrium Modes, Photon Condensation, Optical Microcavity
در دانشکده شهید بهشتی
محدودیت و الگوهای q و r وجود ندارد. در مسائل مکانیک
کوانتومی برای پربرداری شرایط فیزیکی لازم است (عدم صحتی) انتخاب شود که در این
صورت جواب های بخش شعرایی و قضیه توابع وابسته
از جمله و به کمک روش محدود تقارن
مضر نشود، در کار ما چگانسی فوتونها ها ماهانه
است نیازمند آن از دامنه قابل ذکری نداریم. در ادامه
شناسی به همه که حتی برای $q=l(l+1)$، فوتونها در
حالا یا با ترکیب با یک عضویه های منظومه مشابه
آرایه‌ای از میکروکاواکاها نظم به حد می‌گیرد. در
اذاله روابط مربوط به تسلسل برداری، میدان‌های
الکتریکی و مغناطیسی، جکی نامه از (گرد و پرتاب-
یونگ S) و چگالی اریک الکترومغناطیسی برای مقدار
برخی نواحی مربوط به شاخه $lm=20$ و
از مدل 1 را

می‌دهم:

$$\frac{dQ_q^m(\cos \theta)d\theta}{d\Omega_q^m(\cos \theta)d\theta}_{\theta=\theta_0} = \frac{dQ_q^m(\cos \theta)d\theta}{d\Omega_q^m(\cos \theta)d\theta}_{\theta=\theta_0} (V)$$

انتقال μ کیمی، شکل ۱ نمایش سه بعدی از میدان‌های
الکتریکی و مغناطیسی، به عنوان یک منحنی از بررسی‌های
لوله و چکیده ما نمایش می‌دهد که در آنها بیماری بودن
شرايط مزمن در انتقال میدان‌ها با نرمیک نشان به
محدود نارنج و اوا مصرف مختصر مشاهده می‌شود.

شکل ۱: نمایش سه بعدی میدان الکتریکی (رامت) و مغناطیسی

(پر) برای شاخه $lm=20$ مقدار ۲۰۳ از مدل ۱.

در هر زاویه سنتی، مولفه شعرایی و قضیه S
صرف‌های r مقداری l و m از میدان‌های
مستقل r که در انتقال شرعایی به دنباله
طرف دیگر سیانید زمانی S نشان میدان را در انتقال
سکوکه گر می‌تواند و سطح در استوا شاعری به دنباله
سطح و گر مصرف مختاری باعث ایجاد می‌شود. در این دو
رامان در لیست که می‌توان از آن، هم ناتوانی شدن

$$1287 \text{ دیماه ۱۳۹۳، دانشگاه شهید بهشتی}$$
می‌دهند. تفاوت معکوس و تغییر علامت که در دو سمت چپ و راست مخزن در مولفه قطعی دیده می‌شود با پارامتری‌گذاری از مزرع و تشکیل امواج استفاده هم‌همکار است.

![شکل 4: مولفه شعاعی (بالا) و قطعی (پایین) بردار S برای m=0, l=2](image)

$\theta=0.00\text{rad}$ و $r=0.1a..0.5a$

3- نتیجه‌گیری

تشکیل دادیم که در مخزن فوتون‌ها هر تغییر در ایجاد خودبخودی یا پیکربندی یا ترازند از آرایه- های منظم فوتون‌ها فراهم است. ابتدا، که به‌طوری‌که می‌شود بتوان در ابعاد زیرکت از میکروکاوا آی‌تکی به قطع چگال‌شدن فوتون‌ها مانند شکل 2 تجربه کرد. وجود دو مدل اصلی منشا و بازی‌های مختلف انتخاب دستگاه امکان بررسی‌های پیش‌تر دچار تغییر به‌کمک شرایط برای دست یافتن به چگال‌شدن فوتون‌ها در ابعاد کوچک و شرایط خاص، را فراهم می‌کند.

مراجع

![شکل 2: نتیجه‌گیری مولفه شعاعی (بالا) و قطعی (پایین) بردار S برای m=0, l=2](image)

$\theta=0.00\text{rad}$ و $r=0.1a..0.2a$

در شکل 3 روش‌های تارک‌کردن نوایی به ترتیب

برگزی‌تینه مقدار مثبت و کوچک‌ترین مقدار منفی را نشان می‌دهند.

[1288]