Collapse of Electromagnetic Waves in Plasmas

Jafar Borhanian, Farkhondeh Hosseini Faradonbe

Department of Physics, Faculty of Science, University of MohagheghArdabili, P.O. Box 179, Ardabil, Iran

Abstract- A reductive perturbation method is used to reduce the system of Maxwell-Fluid equations into a single three-dimensional nonlinear Schrodinger equation describing the evolution of amplitude of vector potential in an unmagnetized collisionless cold plasma. Relying on this model the possibility of occurrence of collapse phenomena for Gaussian as well as sech-shaped electromagnetic pulse is addressed.

Keywords: Electromagnetic Waves, Unmagnetized Plasmas, Wave Collapse
1- مقدمه
برهمکشی بین پالس لیزری با پلاسمائی، شاد و قوس پدیده‌ای غیرخطی متنوع و مهمی است. بعضی از این پدیده‌ها در مدل‌های برای قلم بررسی افراد و واقعی از آنها فقط در قابل پدیده‌ای با اینکه پیشتر قابل پیش‌بینی سیستم (1) رمی‌کرد که مواد نهایی بسیار نیز هاست. این مقاله در پی آن است که دیده شده است (1) این که در اساسیت این بسیاری از امواج الکترومغناطیسی در دو بعد نشان داده شده است (2) این که پدیده امواج الکترومغناطیسی را در سه بعد بررسی کرد.

2- معادلات اساسی
دینامیک پالس الکترومغناطیسی در یک پلاسمای سرد ماغناطیسی به برخورد تابع مجموعه معادلات بوده می‌باشد. اگر جهت واقعات و امکان قابل بررسی است، می‌توان
\[
\nabla^2 \phi - \omega^2 A = \frac{\partial^2 \phi}{\partial t^2} = 0
\]
\[
\n\frac{\partial \psi_1}{\partial t} + \frac{\partial \psi_2}{\partial x} = 0
\]
\[
\frac{\partial \phi_2}{\partial t} = \frac{e}{m} \frac{\partial \psi_2}{\partial x} - \frac{e}{m} \frac{\partial \psi_1}{\partial x}
\]
\[
\frac{\partial^2 \psi_1}{\partial t^2} + \frac{\partial^2 \psi_2}{\partial x^2} + \frac{\partial^2 \psi_2}{\partial y^2} + \frac{\partial^2 \psi_2}{\partial z^2} + \lambda \psi_2 = 0
\]

3- معادلات شرودینگر غیرخطی به دید
اکنون می‌خواهیم معادلات (1) - (5) را با استفاده از
بیستمین کنفرانس اینترنتی و فتوشیک ایران به همراه اطلاعیه ششمین کنفرانس مهندسی و فناوری فتوشیک ایران

با تعریف لاگرانژی کاهش یافته به صورت زیر

\[
(L) = \frac{1}{2} \int L \, dt
\]

که در آن ضرایب \(f_1 \) برای بریو سکات هایوپولیک برای

\[
f_1 = \frac{\pi^2}{24}, \quad f_2 = \frac{7\pi^4}{240}, \quad f_3 = \frac{1}{3} \left(1 - \frac{\pi^2}{12}\right),
\]

و برای بریو گاوئی نیز به صورت زیر تعریف شده است

\[
f_1 = \sqrt{\pi}, \quad f_2 = \frac{3\sqrt{\pi}}{8}, \quad f_4 = \frac{\sqrt{2\pi}}{32}
\]

با وردش لاگرانژی (16) و انجام عمليات جبری داريم

\[
\rho^2 \frac{w^2}{w} = \left|\rho\right|^2 w_0^2 = I_0; \quad b = \frac{1}{4} \int d\tau \ln w
\]

که در آن \(w_0 \) و \(\rho_0 \) به عبارت ساختار و دامنه اولیه بریو می باشد و \(w = w/w_0 \) باشند. معرفی متغیرهای جدید \(\xi \) و \(\eta \) م العاصمی تحول شاع بریو چنین است

\[
\frac{d^2 w}{d\xi^2} \frac{w}{w^4} + \frac{a}{w^4} = 0
\]

که در آن \(a = 3q_1^2 \eta_2 / 4f_3^2 \epsilon_0 \) م عادله حاکم بر چنین به چنین خواهد بود

\[
\rho = \left|\rho\right| \exp(i\Theta)
\]

می توان نشان داد که لاگرانژی متفاوت با معادله (12) چنین است

\[
L = i \int \left(\psi \frac{\partial \psi}{\partial \tau} - \psi^* \frac{\partial \psi}{\partial \tau} \right) \, d\tau + \int \left(\frac{\partial \psi}{\partial \tau} \frac{\partial \psi}{\partial \tau} \right) \, d\tau - \frac{1}{2} \lambda \left| \psi \right|^4
\]

اکنون با تعریف دو نوع نام ازوم‌گی به شکل سکات هایوپولیک و دیگری به شکل بریو گاوئی، به

\[
\psi(r, \tau) = \rho(r) \sech \left(\frac{r}{w(r)} \right) \exp[ib(r)r^2]
\]

\[
\psi(r, \tau) = \rho(r) \exp \left(- \frac{r^2}{2w(r)^2} + ib(r)r^2 \right)
\]
نتیجه‌گیری

نشان داده شد که معادلات سیالی و مکانولوژی متحرک به شکل معادله شرودینگر غیرخطی ۲ بعیدید. همچنین تولید هایمیک آکولولوژی های طولی تناسب برداری و اندازه حرکت از نتایج مهمی است که در مدل یک بعیدید دیده می‌شود. با استفاده از روشهای روش ورودی امکان پذیرتر شده که با ناب‌های گاوسی و سکات‌هایپروبولیک به‌پینش شده است.

مراجع