We study the variation of geometric phase with distance for a two spin-1/2 system with Dzyaloshinskii-Moriya (DM) interaction, while one of the spins is driven by a time-varying rotating magnetic field and the other one is coupled with a static magnetic field. It is shown that when we consider the spin-spin coupling coefficient in the form of the Calogero-Moser types, the geometric phase can increase with the distance and reach a peak; then it maybe decreases for a short distance and will be unchanged for very long distances. Moreover, increasing the amount of magnetic field causes the decrease of geometric phase in terms of the distance.

Keywords: Geometric phase, qubit, the Calogero-Moser model
جدول می‌آید همچنین. های مغناطیسی خارجی با ازاده تابث هستند به ترتیب با اسپین 2 و اسپین 2 میدان. مغناطیسی جرخان در صفحه X − Y می‌باشد با انتخاب \[\hat{n} = (\cos \phi(t), \sin \phi(t), 0) \]

که \(\phi(t) \) تغییر می‌کند (شرط بندی در و چرخ‌های).

هم‌بندی توصیف کننده این سیستم به شکل زیر خواهد شد:

\[H = J \left(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y + \sigma_i^z \sigma_j^z \right) + D \left(\sigma_i^z - \sigma_i^z \right) \]

(1)

در رابطه با این الکترونیک رابطه زیر می‌باشد:

\[B = D \hat{\rho} \]

(2)

به اسپین‌ها به شکل زیر ساده می‌شود:

\[H = \begin{bmatrix} B_1 & B_1 \exp(-i\phi) & 0 & 0 \\ B_1 \exp(i\phi) & B_1 & 2J + 2iD & 0 \\ 0 & 2J - 2D & -B_1 & B_1 \exp(-i\phi) \\ 0 & 0 & B_1 \exp(-i\phi) & -B_1 \end{bmatrix} \]

(3)

به ویژه مقدارهای میدان‌های عبارتند از:

\[E_{1,2} = \pm \frac{1}{2} \sqrt{4B_1^2 + 2D^2 + 4B_1^2 + 4} \]

(5-الف)

\[E_{3,4} = \pm \frac{1}{2} \sqrt{-2B_1^2 + 2D^2 + 4B_1^2 + 4} \]

(5-ب)

که در رابطه با این مUrlParserه‌ها مستقل از زمان بصورت زیر استفادة کرده است:

\[k_{1,2} = 2E_{1,2}\left(B_1^2 + 2B_1^2 \right) + 2B_1 \left(B_1^2 + 8B_1 - 2B_1 \right) \]

\[k_{3,4} = 2E_{3,4}\left(B_1^2 + 2B_1^2 \right) + 2B_1 \left(B_1^2 + 8B_1 - 2B_1 \right) \]

بس از محاسبات پیچیده، ویژه حالتی منتظر با ویژه مقدارهای H نیز به صورت ذیل به دست می‌آید:

\[F_j = \frac{\text{impl}}{k_j} \]

(4-الف)

\[[D_j] = N \left(M_j \exp(-2i\phi(t)) \right) \]

(4-پ)

که داریم:

\[F_j = \frac{\text{impl}}{k_j} \]

(4-الف)

1. Berry
2. Adiabatic evolution
3. Quantum computation
4. Adiabatic evolution
5. Dzyaloshinski-Moriya
با چاپ‌کردن ویژه حالت‌ها در رابطه (12) داریم:
\[

g_j = 2\pi \sqrt{\frac{\gamma_j}{\mu_j^2 + |J_j|^2 + |K_j|^2}}
\]
(13)

در رابطه بالا,
\[
|V_j|^2 = \frac{1}{\mu_j^2 + |J_j|^2 + |K_j|^2 + 1}
\]
(14)

مدل کالگرو – موزر ۸

در یک شیبک اسپسینی، مکان واقعی اسپسین به دلیل تولید فوتون ها به طور نوسانی تغییر می‌کند. در این حالت انتقال های تبادلی توانایی از مکان بوده و به فاصله بین اسپسین‌ها وابسته است. لذا مطاعم تغییرات فازنده‌ی با فاصله در دارای اهمیت قرار گرفته است. در این فرمول می‌توانیم حالات کانتسیمو دو کیویتی که دارای اندرکشت تبادلی \(J(R) \) باشد. فاصله بین کیویتی می‌باشد. در مدل کالگرو – موزر ۸ می‌توانیم \(J(R) \) را به صورت ذیل در نظر گیریم:
\[
J(R) = \frac{1}{R^2}
\]
(15)

که نمودارهای آن در شکل‌های (1) و (2) رسم شده است.

\[B_2 = 1 \text{ و } D = 0.5 \]
\[\gamma_1 \text{ نسبت به } R \text{ به ارای } 0.5 \]
\[\text{و مقیار مختلف } B_1 \text{ در مدل کالگرو – موزر } \]

*Calogero-Moser model

Franz برای همیلتوئینی سیستمی، با پارامتر وابسته به زمان \(R(t) \) که در رابطه (6) در رابطه به زمان \(m \) در معادلات ویژه مقداری ویژه می‌باشد.

\[
M_j = \frac{4d(B_j - E_j)}{k_j}
\]
(7-1)

\[
G_{1,2} = -2(\frac{\gamma_1}{\mu_1^2 + |J_1|^2 + |K_1|^2})
\]
(7-2)

\[
G_{3,4} = -2(\frac{\gamma_4}{\mu_4^2 + |J_4|^2 + |K_4|^2})
\]
(7-3)

در رابطه (6)، ضریب بهتچارژ برای زمان ویژه مقدار می‌باشد.

۳- فاز بری

همیلتوئینی سیستمی با پارامتر وابسته به زمان \(R(t) \) که در در رابطه (6) در رابطه به زمان \(m \) در معادلات ویژه مقداری ویژه می‌باشد.

\[
H(R(t)) = E_n |n(R(t))|
\]
(8)

همان‌طور که در رابطه (6) در رابطه به زمان \(m \) در معادلات ویژه مقداری ویژه می‌باشد.

\[
H(R(t)) |n(R(t))| = i \hbar \frac{\partial}{\partial t} |n(R(t))|
\]
(9)

اگر تغییرات \(R(t) \) به حد کافی کند باشد، طبق قضیه (7) در رابطه (6) در رابطه به زمان \(m \) در معادلات ویژه H(R(t)) در رابطه (6) در رابطه به زمان \(m \) در معادلات ویژه مقداری ویژه می‌باشد.

\[
|n((R_0), t_0 = 0; t) = \exp\left\{ -\frac{i}{\hbar} \int_0^t E_n(R(t')) dt'\right\}
\]
(10)

\[
\times \exp\left\{ i\gamma_n(t) |n(R(t))\right\}
\]

ضریب اول در طرف راست رابطه باز فاز دینامیکی است. از طرف دیگر با جایگذاری رابطه (6) در رابطه (9) در رابطه (6) در رابطه به زمان \(m \) در معادلات ویژه H(R(t)) در رابطه (6) در رابطه به زمان \(m \) در معادلات ویژه مقداری ویژه می‌باشد.

\[
\gamma_n(t) = i \int_0^t \langle n(R(t')) | \nabla_R n(R(t')) \rangle dR(t')
\]
(11)

در رابطه باز فاز دینامیکی مشابه سیستمی فیزیکی به‌طور موردعروف است که پارامتر خارجی \(R(t) \) ناحیه \(R_0 \) در رابطه (6) در رابطه به زمان \(m \) در معادلات ویژه H(R(t)) در رابطه (6) در رابطه به زمان \(m \) در معادلات ویژه مقداری ویژه می‌باشد.

\[
\gamma_j = \int_0^T \langle \Phi_j(t) | \frac{d}{dt} | \Phi_j(t) \rangle dt
\]
(12)
رفتار کلی این نمونه‌ها بین صورت است که نخست میزان فاز‌سنسی با افزایش فاصله یک سیر صعودی را طی می‌کند که پس از رسیدن به یک ححد پیشنهادی و احتمالاً یک کاهش مختصر، ثابت بودن فاز‌سنسی را در فواصل دور شاهد هستند. برای مثال در شکل (1) محتوی سیب‌نشان و $B_2 = 0.5$ درصد شده است. همانطور که ملاحظه می‌شود، مرز نقطه اوج فاز‌سنسی در این بین معنی است که R میزان فاز‌سنسی افزایش می‌یابد و دارای یک پیوستگی در می‌آید $R \geq 3.085$ کاهش یافته و در $R = 1.37$ همچنین مشاهده شود که در حال γ افت نمودار مواد همیشه شویم و به ارای $R = 1.879$ فاز‌سنسی نابودی می‌شود. همچنین در هر دو میزان با افزایش میدان، مقدار فاز‌سنسی کاهش می‌یابد.

شکل (2): تغییرات γ نسبت به R به ارای 0.5 و $B_2 = 1$ در مدل کالگرو - موز نوع 1.

در مدل کالگرو - موز نوع 2 ر ای به صورت دیگر در نظر می‌گیریم:

$$J(R) = \gamma \frac{1}{\sinh R}$$

محاسبه گری

فاز‌سنسی سیستم دو کوپیتی با فاصله بین کوپیت ها هنگامی که کوپیت‌ها تحت تأثیر میدان مغناطیسی مختلفی باشند، در مدل یا هایز بی‌هدر همان‌طور که درункه‌دار ی دیترشوندزی - دمی (DM) مورد مطالعه قرار گرفت نشان داده شد که تحت دو مدل کالگرو - موز، فاز‌سنسی با افزایش فاصله یک سیر صعودی را طی می‌کند که پس از رسیدن به یک ححد پیشنهادی و احتمالاً یک کاهش مختصر، ثابت بودن فاز‌سنسی را در فواصل دور شاهد هستند. همچنین نشان داده که افزایش انداره میدان، باعث کاهش فاز‌سنسی می‌شود.

مراجع