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  داوطکذٌ فیضیک داوطگاٌ یضد،صفاییٍ ،یضد، 

جشیان عثًسی  .ساختٍ ضذ SiO2/Si صیشلایًٍسی تا پًضص واوً صفحات گشافه تش سيی تشاوضیستي سپس  سىتضتا استفادٌ اص سيش َامش  گشافه-چکیذٌ
َای  ایه وسثت تٍ مًلکًل. قشاس گشفتتشسسی  مًسداکسیظن دس ضشایط محیطی ي دس دماَای مختلف  گاص معشض کٍ دس اص افضاسٌ ساختٍ ضذٌ َىگامی

دَذ ي مًجة  ص میکاَی تاس سا َا ش تشاکم حاملحسگاکسیظن تش سيی  تىاتشایه جزب مًلکًلُای .سا دس دمای اتاق وطان داد p-typeپاسخ اکسیظن 
َمچىیه دس ایه  ضًد. اما افضایص دما تطًس چطمگیشی مىجش تٍ افضایص جشیان ي افضایص قذست حسگشی آن می ضًد. می جشیان الکتشیکی اَصک

 گیشی ي تاثیش جزب اکسیظن تش مقذاس جشیان الکتشیکی وطان دادٌ ضذٌ است. مطالعٍ میضان حساسیت حسگش ساختٍ ضذٌ ویض اوذاصٌ

  ، افضایص دمان، گشافه، حساسیت، ضشایط محیطیسىسًس اکسیظ -کلیذ ياطٌ

 

The Effect of Temperature on the Oxygen Sensing by Graphen 
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Abstract- We have synthesized graphene using Hammers' method. Then the Oxygen sensor is fabricated with 

qualified graphene nanosheets covered SiO2/Si wafer and Ohmic contact in tow corners. Finally, we 

investigate the sensitivity of it when exposed to Oxygen at ambient condition in air and at different 

temperatures. 

A resistive graphene-based gas sensor prepared in this way revealed p-type oxygen response at room 

temperature. So the absorption of Oxygen molecules on it increases the carrier density and cause to increase 

the electrical current across it. The variations of electrical current across the sensor, when exposed to 

Oxygen flow, get increased by increasing temperature.  

Keywords: Oxygen sensor, graphene, sensitivity, ambient condition 
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1   Introduction 
 

Graphene, a two-dimensional (2D) sp
2
 carbon 

network, has attracted a wide range of interest due 

to its fascinating electronic, mechanical and 

thermal properties after its empirical discovery in 

2004 [1]. The extremely high carrier mobility, 

mechanical flexibility, optical transparency and 

chemical stability of graphene provide a great 

opportunity for the development of high-

performance electronic and optoelectronic devices 

[2–11].  

Among other applications, the exceptional surface-

to volume ratio and high electron mobility in room 

temperature entitles graphene as a promising 

candidate for gas sensing applications. In this 

regard, the ultimate single-molecule sensitivity of 

graphene devices has been reported in recent years 

[12,13]. In addition to sensitivity and selectivity, 

sensor response is important in environmental 

conditions and under the interaction with 

surrounding atmospheric gases. 

Although Oxygen (O2) is very important for life 

and industrial use, it can lead to combustion at high 

concentrations. Some researches show the ability 

of graphene to sense O2 with very high sensitivity. 

In this work, we have used graphene for the 

fabrication of an O2 sensor at ambient condition in 

air when exposed to O2 gas and at different 

temperatures.  

So, Hummers' method was utilized to oxidize 

natural graphite powder then the chemically 

oxidized graphite is cleaved to obtain graphene 

oxide nanosheets. Graphene nanosheets can be 

achieved by an additional reduction step. As-

prepared sheets were characterized by the field 

emission scanning electron microscope (FESEM), 

FTIR spectrum and Raman scattering analysis. 

Then the O2 sensor is fabricated with qualified 

graphene nanosheets covered SiO2/Si wafer and 

Ohmic contact in tow corners. Finally, we 

investigate the sensitivity of it at ambient condition 

in air and under O2 flow and at different 

temperatures. 

2   Materials and method 

In order to synthesize the graphite oxide, 

Hummers’ method was utilized to oxidize natural 

graphite powder. 

In this process, in a 250 mL flask 1 g of graphite 

and 1.5 g NaNO3 were added to 25 mL of H2SO4. 

The flask was then placed in an ice bath for 15 min 

to cool it down to 0 ◦C. After that, 3 g of potassium 

permanganate (KMnO4) was added slowly to the 

flask. The obtained suspension was then stirred 

continuously for 2 h. The temperature in this step 

was kept at 35
◦
C. Subsequently, it was diluted by 

200 mL of deionized (DI) water at the temperature 

less than 60
◦
C. H2O2 solution was then added to 

flask over which the residual permanganate was 

reduced to soluble manganese ions. The obtained 

product was then isolated by filtration, washed 

copiously with DI water and dried at 60
◦
C for 24 h 

to obtain brownish graphite oxide powder. In order 

to form a stable colloidal dispersion, a 10 mg 

portion of graphite oxide powder was dispersed in 

10 mL of DI water by magnetic stirring for 1 h and 

sonication for 2 h [14, 15]. 

As a substrate for deposition of G sheets, (1 0 0) 

oriented silicon wafer was used. A 100 nm 

thickness of SiO2 layer was then thermally grown 

on silicon substrate to electrically isolate the 

contacting electrodes from the substrate.  

The Raman spectroscopy was used for 

characterization of the reduced sheets. Raman 

spectra were obtained at room temperature using a 

Nicolet Almega XR Dispersive Raman 

spectrometer equipped with second harmonic 

frequency of a Nd:YLF laser operating at 532 nm. 

Fourier transform infrared spectroscopy (FT-IR) 

was obtained using Bruker Tensor 27 Spectrometer 

to characterize the oxidized sheets. Morphological 

study of the samples was performed by a Hitachi 

4160 FESEM at an electron accelerating voltage of 

15 kV.  

3   Results and Discussion 

 

To characterize the surface topography of the 

prepared sheets by FESEM, graphene sheets were 

coated on the Si/SiO2 substrate. Figures 1 show 

FESEM images of the prepared graphene sheets. 

Images present some partially overlapped sheets 

deposited on the substrate. As can be seen from 

Figures 2 and 3, the dimension of the majority of 

the sheets was found to be a few micrometers. 

 

 

 

 

 

 

 

 

 
Figure 1: FESEM images of the prepared G sheets on 

SiO2/Si substrate. 

Raman spectroscopy is a widely used tool for the 

characterization of carbon-based structures. The 

Raman spectra of graphene sheets exhibit two 

important peaks called D, G and 2D bands around 
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1331, 1590 and 2898 cm
−1

. The G band shows the 

presence of sp
2
 carbon-type structures within the 

sample and the D band is associated with the 

presence of defects in the hexagonal graphitic 

layers [16–18]. 
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Figure 2: Raman spectroscopy of the prepared graphene 

sheets on SiO2/Si substrate. 

 
To identify the bonds between C and O, FTIR 

analysis was carried out for graphene sheets on 

SiO2/Si and Graphite Oxide powder prepared by 

Hammers' method. The FTIR spectra show the 

presence of C-H, C-O, C-O-C, C-C and C=O at 

900, 1020, 1123, 1583 and 1710 cm
-1

 respectively 

in Figure 3. The intensity of peaks is different for 

graphene layers and Graphite Oxide powder. 

Spatially, the appearance of a spread peak in the 

region of 3000 to 3600 cm
-1

 is seen in FTIR of 

Graphite Oxide powder that is related to the 

tensile vibration of the O-H bond [19, 20].  
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Figure 3: FTIR spectra of the prepared graphene sheets 

on SiO2/Si substrate. 

 

To test the applicability of the fabricated structure 

as O2 sensor, the electrical current variation during 

exposure of O2 at different temperatures were 

studied at ambient conditions in air. For this 

purpose, the current across the fabricated structure 

have been investigated versus the source-drain 

voltage before and after gas absorption at different 

tempratures. Then the differences between them 

are plotted at different temperatures versus source- 

drain voltage (Fig. 4).  
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Figure 4: Variations of electrical current across the 

sensor, when exposed to Oxygen flow at different 

temperature. 

 

The current of the sensor showed an increase when 

exposed to the O2 flow at ambient condition and 

room temperature. These current increases were 

due to the absorption of O2 molecules on graphene 

surface. They act as p-type dopants and enhanced 

the hole conduction and generate a significant 

increase in current. At higher temperature, the 

absorption rate of O2 on the surface of graphene 

increases and so the response of sensor to O2 flow 

becomes stronger.   

 

 
Figure 5: Sensitivity of the graphene to Oxygen at 60°C.  

 

Fig. 5 presents the achieved electrochemical 

sensitivity (∆I/I) of the graphene based sensor, in 

response to Oxygen gas at 60°C. One can see that 

electrical conductivity of graphene is highly 

depended on the gas adsorption on this two 

dimensional carbon lattice. Sp
2
 orbitals in 

graphene, behave as active sites which adsorb 

molecular gases and can lead to variation of 

conductivity according to the electron affinity of 

the Oxygen molecules. 

In conclusion, the current that is passing from the 

graphene sensor changes when expose to the O2 

flow at ambient condition. By increasing 

temperature the sensitivity of graphene for O2 

sensing gets increased.  
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