Localized Surface Plasmon Resonances of Silver Ellipsoidal Nanoparticles

Ali Khaledi-Nasab and Vahid Fallahi

Department of Physics & Optics and Laser Engineering, University of Bonab, 5551761167 Bonab, Iran

Abstract: The finite difference time domain method (FDTD) has been used to model the extinction cross section of silver (Ag) ellipsoidal nanoparticles. The localized surface Plasmon resonance frequencies strongly depend on the size and orientation of the nanoparticles. It has been calculated the longitudinal, transverse and hybrid modes for nanoparticles with prolate spheroid geometry. The longitudinal resonance mode occurs when the electric field of incident light is along the c-axis of the prolate spheroid. Similarly, the transverse resonance mode occurs when the electric field of incident light is perpendicular to the c-axis. In our calculations, the dielectric function has been obtained according to the Drude-Sommerfeld theory.

Keywords: Extinction cross section, Mie Scattering theory, Localized surface Plasmon, Finite difference time domain.
تشدیدی داشته که شاید یک مدل طولی و دو مدل عرضی است. نوسان این الکترون نسبت به هسته مثبت در راستای هر یک از محورهای پیشگون موجب به شکل متناهی در حالتی که روشی متفاوتی از قبیل تضاد ۲ (FDTD) [۱۱] در مدلی جدید (DDA) [۱۲] دقیق و چندکی جدید گسترشده (CG-FFT) [۱۵] برای آن شباهت‌های می‌شود.

۲- مدل سازی و میزان نظر

نظریه خاصیت ایونی می‌تواند این موضوع حین کننده بین این نمونه افتاده باشد. به‌طوری‌که و هم‌سازی‌های مختلف در طول موج‌های هم‌سازی رفتار تندیسی از خود نشان می‌دهند و سطح مقطع خاموشی آن‌ها (مجموع سطح مقطع‌های جذب، براکدیگی و ضربین است) برای بازگشت.FMA و اضافه نشان داد. تحقیق نمودانی از طول موج‌های خاموشی در مسیر اولیه با فضاهای بی‌وضعی در انتقال مخازن. نسبت سطح مقطع‌های براکدیگی با ضربین واقع در محدوده خلا و بسته به صورت زیری انجام می‌شود:

\[s_{ext} = \frac{2p}{k^2} \sum_{l=1}^{(2l+1)} (a_l + b_l) \] (۱)

که در آن این ضوابط اموج‌پرداز شده هستند:

\[a_l = \frac{y_j(y_j)x(x) - n_j(y_j)x_j(x)}{y_j(x_jy_j) - n_j(y_j)x_j(x)} \] (۲)

\[b_l = \frac{y_j(y_j)x(x) - y_j(x)j(x)}{y_j(x_jy_j) - n_j(y_j)x_j(x)} \] (۳)

مواد و هم‌سازی می‌تواند از راهی این الکترون از طریق مدل در نویسندگان فلز و تاثیر گذار برای ایک‌کمکی که تشدید بالاسونیکی سطحی (LSPR) است. به‌طور از اعداد آزمایشی الکترونی ۱/۰۹. نانتوزارت کروی در دایره ای دارای بخش بیشتر که دارای سطح‌های پیشگون می‌باشد. اما نانتوزارتی با هنگامی که دارای سه محور تقارنی هستند، بیشتر از یک مدل نانووزارتی می‌باشد.
بسیاری از کنفرانس اینیک و فتوتوفیک ایران به همراه ششمین کنفرانس مهندسی و فناوری فتوتوفیک ایران، به مدت ۳ روز در سال ۱۳۹۹ برگزار شد.

شکل ۱: نمودار مشخصه ماشین‌خورده در این شیوه از نوع CST برای ناوبرده کروی از جنس نقره به شعاع ۳۰ nm.

و $a = b < c$.

جهت محور برهم در آن نسبت به محور‌های x و y یکی از روش‌های برهم‌کنش و مدل‌های مختلفی را می‌توانند بررسی شود. در این روش، به ترتیب نویز سل و هاله‌زندر دوم هستند که به صورت زیر نوشت می‌شوند:

$$y(r) = \frac{\mu_p}{\sqrt{2}} J_1(r).$$

$$x(r) = \frac{\mu_p}{\sqrt{2}} H^2_1(r).$$

ننظریه پراکندگی می‌تواند به هندسه‌ی کوپر بکر بوده‌ی می‌شود. معمولاً برای بررسی و حل کردن ساختارهای غیرکمی‌ای، برای روش‌های بعدی فکری در مقدمه‌ی استفاده کنیم. روش تفکیک‌هایی در حوزه زمانی یکی از قدیمی‌ترین روشهای شیب‌سازی است که به اولین بار برای امکان سیگنال و سپس در محدوده فکری ممکن برابری ساختارهای با هندسه‌ی نامناسبی از آن استفاده شد.

مدل در نظر گرفته شده برای شیب‌سازی پلاستیکی و با زاویه $a = b < c$، به صورت ممکن بکر به دست می‌آید.

$$\phi = \frac{\pi}{2} J_1(r).$$

$$\psi(r) = \frac{\pi}{2} H^2_1(r).$$

نتایج مشخصه شیب‌سازی ۲-تایی کلیک و ۲-تایی انتقال حاضر از CST به نویز فرکانسی با نمونه‌بندی f_0 به دست آمد. نظریه‌پراکندگی می‌تواند به ساختارهای این شیوه از نوع CST برای ناوبرده کروی از جنس نقره به شعاع ۳۰ nm و پیامد خوبی با هم دارد.

شکل ۲: مقایسه نقطه خاموشی بسته آمده از طریق نظریه پراکندگی برای ناوبرده کروی از جنس نقره به شعاع ۳۰ nm و نرمال‌بندی شیب‌سازی Mie برای ناوبرده کروی از جنس نقره به شعاع ۳۰ nm.

θ و ϕ خلاصه اگزی و ψ بیان می‌کند. نتایج حاصل از این دو روش برای ناوبرده کروی از جنس نقره به شعاع ۳۰nm و با پیامد خوبی با هم دارد.

شورت زیر نوشت می‌شود:

$$y(r) = \frac{\mu_p}{\sqrt{2}} J_1(r).$$

$$x(r) = \frac{\mu_p}{\sqrt{2}} H^2_1(r).$$

نتایج شیب‌سازی ۳-تایی

تأیید دی الکترون فلزات در چارچوب نظریه درود

سالارفرید (می‌تواند نظریه درود در این نظریه قرار گیرد، گاه الکترون آزاد در تیم‌های خاص اینیک فلزات ناقص اپا می‌کند. این الکترون‌ها به طور آزادانه در بین دو مرکز پراکندگی (پلاستیکی، فونوس، و ناخالص‌های...) حاکم می‌گردد.)
در راستای محور برزگ بیضی گون و عمود بر آن باشد.

مراجع

شکل 3. مدهای طولی (0°), عرضی (90°) و هیبریدی (90° < f < 0°) بر پای‌گیری شده به ارای رزیاف طلی 90° = q یا بیش‌گونی با c = 60 nm در ادامه، به بررسی مدهای تشکیل‌دهنده بیضی گون با شان داده شده در c = 60 nm و (0° < f < 90°) = q و (90° < f < 0°) = q نیز به تدریج بیان شده است.

به ارای 90° = q در شکل 3 رسمی شده است. میدان الکتریکی قرار گرفتن و پلاریزاسیون سطحی جایگزین مدهای عرضی را به نسبت بیش‌گونی شده، مهدای هیبریدی در نانو‌ره شکل می‌گیرد. به طوری که در راوه 90° = q تحتاً مدهای عرضی بیانگیری گون می‌شود. هم‌اکنون که در شکل به وضوح می‌توان دید، مدهای هیبریدی طولی به دلیل افزایش بارهای لازم، در طول موج‌های بلند بیانگیری می‌شوند. با افزایش زاویه f، قله فرکانس بیانگیری مدهای هیبریدی به سمت طول موج‌های کوتاه جابجا شده، با طول‌گذاری در زاویه 90° = q این مدهای هیبریدی کامل به مدمهای عرضی در طول موج‌های کوتاه جابجا شده.

نتایج

پریموخوی نانوذرات نقره (Ag) با هندسه بیضی گون با استفاده از روش تکامل مناسب در جهت زمان دست ام. شان داده شد که فرکانس بیانگیری پلاریزاسیون سطحی جایگزین می‌شود. به هندسه و جهت‌گیری نانوذرات سنجیده‌دار. برای نانوذرات نقره با هندسه بیضی گون طولی - محور دماه طولی، عرضی و هیبریدی تعیین شدند. نتایج بدست آمده مدهای طولی و عرضی برای موقعیت است که نشان میدان الکتریکی فرودی به ترتیب 108