A Theoretical Scheme for Generation of a Class of SU(1,1) and SU(2) Entangled Nonlinear Coherent States

A. Karimi 1,2 and M. K. Tavassoly 1,3

1 Atomic and Molecular Group, Faculty of Physics, University of Yazd, Yazd
2 Department of Physics, Islamic Azad University of Abadeh, Fars
3 Photonic & Research Group, Engineering Research Center, University of Yazd, Yazd

Abstract- Recently, the entangled nonlinear coherent states are introduced via replacing coherent states with nonlinear coherent states in entangled coherent states. In this paper, in order to generate the SU(1,1) and SU(2) entangled nonlinear coherent states, an appropriate scheme is presented. The scheme is based on the resonant interaction of a Λ-type three-level atom with the two cavity modes of a quantized field in the presence of two strong classical fields.

Keywords: Entangled nonlinear coherent states, SU(1,1) and SU(2) groups.
1. مقدمه

برخی از مدل‌های جدید، به عنوان این‌گونه غیرکلاسیکی سامانه‌های کوانتومی، نقش مهمی را در فرایند اطلاعات کوانتومی در هر دو زمینه نظری و تجربی ایفا می‌کنند. در دو جهت اخیر طریقه‌های مختلفی به منظور مطالعه و تولید حالت‌های غیرکلاسیک سامانه‌های کوانتومی بحث و پیشنهاد قرار گرفته است [۳۱]. به عنوان نمونه‌هایی از این حالت‌ها، حالت‌های همدوس در همدودی زوج به کمک حالت‌های

همدوس (\(|\pm \alpha \rangle \)) به شکل زیر نمایش داده شده است [۳۲]:

\[
|\Psi_{ENCS}\rangle = N_{ENCS} \times (|\alpha, f_1\rangle |e^{i\theta} \alpha, f_2\rangle \pm e^{i\phi} |\alpha, f_1\rangle |e^{i\theta} \alpha, f_2\rangle) \tag{2}
\]

که در آن حالت همدوس غیرخطی طبق رابطه زیر تعریف می‌شود [۳۱]

\[
|\alpha, f\rangle = N_{ENCS} \sum_{n=0}^{\infty} [\frac{f(n)!}{n!}] |a^n| n \tag{3}
\]

و ثابت از شرط بندی‌بندی به دست می‌آید. اخیراً به بررسی این‌گونه سامانه‌های غیرکلاسیکی جالبی از این حالت‌ها مشاهده شده است [۳۲].

2. تولید فیزیکی حالت‌های همدوس غیرخطی

در همدودی در این قسمت، با ارائه ترکیبی این سطه‌ایکنکلاسیکی، در حضور دو میدان کلاسیکی قوی، به تولید فیزیکی دو رده ویژه از این حالت‌ها می‌پردازیم [۳۱]. این چنین آزمایشگاهی از یک تشکیل‌دهنده فابری-برو، حاصل کننده دو
به منظور حفظ وظایفی بکارآورید عملکدهای یکنواختی - گونه ظاهرشده در رابطه (12) برای مدهای a و b، توابع غيرخطی ویژه‌ای را مورد بررسی قرار می‌دهیم.

3. تولید فیزیکی رده‌ای خاص از حالت‌های SU(1,1)

همدوس غیرخطی درهمتنهاد (1,1) با در نظر گرفتن تابع غیرخطی منظور از پاسخ مثبتی و $V(x) = U(x) \tan^2(\lambda x)$ اصلاح شده. (13)

$$f_i(n) = \frac{\hbar^2}{2a^2} (n + 2\lambda - 1)$$

که در این ارتباط، λ و μ به ترتیب ساده‌سازی یا جرم $\lambda(\lambda + 1) = \frac{2a^2}{2a^2} = \frac{2a^2}{2a^2}$ توسط رابطه به شدت و برداشت منظوره می‌شود (زیرشماره 1 در رابطه 11). روابط جایگزین $SU(1,1)$ انتاره دارد. روابط جایگزین برای عملکرهای تغییر شکل یافته منظور با شکل زیر داده‌اند:

$$[A_1, A_i^+] = \hbar^2 (n_i + \lambda), \quad [B_i, B_i^+] = \hbar^2 (n_i + \lambda)$$

$K^0_{1a} = n_i + \lambda \quad \text{و} \quad K^0_{1b} = \frac{\hbar^2}{2a^2} A_i^+$

با تعریف $K^0_{1a} = \frac{\hbar^2}{2a^2} A_i^+$ باشد $K^0_{1b} = \frac{\hbar^2}{2a^2} B_i^+$

برای مد $i = a, b$ روابط جایگزینی را می‌توان نشان داد که در تابع شکل زیر وحشت:

$$[K^0_{1a}, K^0_{1b}] = \pm K^0_{1a}, \quad \text{و} \quad [K^0_{1a}, K^0_{1b}] = 2K^0_{1a}$$

که برخی از جبری گروه SU(1,1) است. این اشتباه در رابطه 11 صورت می‌گیرد.

از طرف دیگر نظریه گروهی قائل به این است که برای همگونی حالت‌های همدوس، رابطه (12) را می‌توان به شکل زیر نوشته کرد:

$$\frac{1}{\sqrt{2}} e^{-it\sqrt{K_{1a}^2 + g^2}} e^{iK_{1a}\eta} K_{1a} e^{i\eta} K_{1b} e^{i\eta} K_{1b}^+ \sum_{n_i} \left| 0_{a} \right| 0_{b}$$

$$+ e^{it\sqrt{K_{1a}^2 + g^2}} e^{-iK_{1a}\eta} K_{1a} e^{-i\eta} K_{1b} e^{-i\eta} K_{1b}^+ \sum_{n_i} \left| 0_{a} \right| 0_{b}$$

در نظر گرفتن $\beta = i \frac{\Omega_b g_{1e} e^{-i\eta}}{2\sqrt{g^2 + b^2}}$، $\alpha = -i \frac{\Omega_a g_{1e} e^{-i\eta}}{2\sqrt{g^2 + b^2}}$

حالات سامانه به شکل زیر به دست می‌آید:

$$H_{cl} \left| 0 \right\rangle = 0, \quad H_{cl} \left| \pm \right\rangle = \pm \sqrt{g^2 + b^2} \left| \pm \right\rangle$$

عملکرهای H_{cl} و H_{cl} به دست می‌آیند و برای رایانه‌ای دینامیک سامانه، از تصویر بر روش کنتکست که از تبدیل زیر به دست می‌آید، استفاده می‌کنیم:

$$R = \exp[-i\sqrt{g^2 + b^2} \left| + \right\rangle \langle - \right| - i\left| - \right\rangle \langle + \right|]$$

هم اکنون، با یک اتم سطحی از درون کوارک، حالت همدوس غیرخطی در این تصویر رابطه 12 تولید می‌شود. برای این منظور اتم سطحی و میدان را انتاره به ترتیب در حالت ترکیبی (3) و حالت‌های خلا (0) را می‌توان فرض کرد. بررسی این از کوارک با کمک عملکره پخش و تغییر شکل سامانه اتم‌سازی و

$$U(t) = R_{eff} (t) = R_{exp} [-iH_{eff} t]$$

$$= \exp[-it\sqrt{g^2 + b^2} \left| + \right\rangle \langle - \right| - i\left| - \right\rangle \langle + \right|]$$

$$\times \exp[-it\left| + \right\rangle \langle - \right| - i\left| - \right\rangle \langle + \right|]$$

$$\times \left[\frac{\Omega_a g_{1e} e^{-i\eta}}{2\sqrt{g^2 + b^2}} e^{-i\eta} A_i + e^{i\eta} A_i \right]$$

$$+ \frac{\Omega_b g_{1e} e^{-i\eta}}{2\sqrt{g^2 + b^2}} e^{i\eta} B_i + e^{i\eta} B_i$$

103
در بهرغم‌الدینه (1.1) شد، با تعریف عملگرهای غیرخطی جدید و به‌وسیله روابط جایگزین برای عملگرهای غیرخطی تغییر‌شده، به جبر لگوهو (SU(2)) می‌رسیم.

با استفاده از جبر و تغییر‌نگه‌داشتن مناسب، رابطه‌ای مشابه با رابطه (16) ظاهر می‌شود که پس از کش عملگرهای جایگزینی که روت‌های برابر با شاخص اصلاحشده هستند، خلاصه می‌شود. اخیراً مشابه با (18) مربوط با گروه SU(2) با دسته‌ی می‌آید [8]، پس از خروج این از کلاک در حال برآمگیخته‌ی (3).

سالمندی در حالی قرار می‌گیرد:

\[
|\psi\rangle = N_{ENCS}\left[e^{-\frac{\mu^2 + \xi^2}{2\mu}} \left|\eta_1(\alpha), f_1\right\rangle_a - \delta_1(\beta), f_2\right\rangle_b \right] + \left(e^{\frac{\mu^2 + \xi^2}{2\mu}} \left|\eta_2(\alpha), f_2\right\rangle_a \left|\eta_2(\alpha), f_2\right\rangle_b \right]
\]

(11) احتمال موفقیت این روابط و تولید این حالات، از رابطه مشابه با ارائه در مورد گروه گفته‌شده، به دست می‌آید.

5. تحقیق‌گرای
در این مقاله از معرفی مخصر حل‌های همودوس غیرخطی در زیر تبدیل به بازه طرح‌های پایانی برای استفاده کننده استفاده کننده از نوع A یک کلاک دو‌دمی در حضور دو میدان کلاسیکی قوی، به تولید فیزیکی این حالات برمی‌خیزد و با دنبالگری‌های تابع غیرخطی (n) و f(n) مشابه با دو پایان‌های فیزیکی معین دو رده‌ای خاص از حل‌های همودوس غیرخطی در بهرغم‌الدین بودند. سالمندی می‌گردد (1, 1) و (SU(2)) را تولید کرده‌یم.

\[
\eta = \frac{\hbar^2}{2\mu} + \xi = \frac{\hbar^2}{2\mu} - \xi
\]

که در آن از روابط گردد:

\[
\eta_1(\alpha), f_1 \rangle_a = \frac{e^{\xi}K_{in} - e^{-\xi}K_{in}}{\sqrt{\hbar}} |0\rangle_a
\]

\[
= (1 - \frac{\hbar^2}{2\mu}) |\eta_1(\alpha)|^2 \sum_{n=0}^{\infty} \left| f_i(n) \right|^2 |\eta_1(\alpha)|^n |n\rangle
\]

(17)

و رابطه‌ای مشابه برای \(b \):

\[
\eta_1(\alpha), f_1 \rangle_b = \frac{e^{-\xi}K_{in} - e^{\xi}K_{in}}{\sqrt{\hbar}} |0\rangle_b
\]

\[
= (1 - \frac{\hbar^2}{2\mu}) |\eta_1(\alpha)|^2 \sum_{n=0}^{\infty} \left| f_i(n) \right|^2 |\eta_1(\alpha)|^n |n\rangle
\]

(18)

و اگر این پس از خروج از کلاک در حال برآمگیخته‌ی (3) باشد، سالمندی در حالی قرار می‌گیرد:

\[
|\psi\rangle = N_{ENCS}\left[e^{-\frac{\mu^2 + \xi^2}{2\mu}} \left|\eta_1(\alpha), f_1\right\rangle_a - \delta_1(\beta), f_2\right\rangle_b \right] + \left(e^{\frac{\mu^2 + \xi^2}{2\mu}} \left|\eta_2(\alpha), f_2\right\rangle_a \left|\eta_2(\alpha), f_2\right\rangle_b \right]
\]

(19)

\[P = N_{ENCS}^2 \]

از انجایی که احتمال موفقیت این روابط می‌باشد، در نتیجه نتایج این آزمایش به طور میانگین به نتایج پی‌زده برای تولید این حالات منهی می‌شود.

4. تولید فیزیکی ردیاب خاص از حل‌های همودوس غیرخطی در بهرغم‌الدینه (2)

به عنوان مثالی دیگر از کاربرد کريستال‌های ارائه‌شده در این مقاله، به طور مختصر، تابع غیرخطی منظم با تابع \(V(x) = U \cdot \tanh(\alpha x) \) یک تابع الگوی پیچیده‌شده دیوار-تیری زیر گردد:

\[
f_2(n) = \frac{\sqrt{\hbar^2} (2s + 1 - n)}{2\mu \alpha \sqrt{\hbar}}
\]

(20)

\[\mu \]

و مشابه قسمت قبل متغیر متغیر، تابع رابطه‌ای مشابه با متغیر \(\lambda \) تعریف می‌شود (زیرنویس 2 در در حالی که به روشی که در قسمت قبل منجر به تولید حل‌های همودوس غیرخطی