Extremely Dark Material Using Low Density Multi-Walled Carbon Nanotube Array

Yasser Shamsollahi¹, M. K. Moravje-Farshi² and A. Chaman-Motlagh³

¹Faculty of Electrical and Computer Engineering Advanced Devices Simulation Lab, Tarbiat Modares University.

²Faculty of Electrical and Computer Engineering, Department of Electronics, Imam Hossein University.

Abstract- Utilizing a low density square array of multi-walled carbon nanotubes we have demonstrated an almost ideal black body with $\Lambda \approx 99.99\%$ in green ranges of about $\lambda=534$ nm. Another observation is absorption more than 99% in a bandwidth of 60 nm around green range of visible light. Moreover, absorption more than 80% in whole visible range of light makes this structure a good candidate for solar energy conversion purposes. A high absorption coefficient of $\alpha \approx 1 \mu m^{-1}$ has been achieved that is an order of magnitude more than the most one reported up to now.

Keywords: black body, absorption coefficient, multi-walled carbon nanotube.
همچنین، ضریب جذب ساختر پیشنهادی در این مقاله برای $\theta = 1 \mu m$ به انتخاب سرشاره، به مقدار -1 در اینجا انتخاب شده است.

توجهی به اینکه α ساختر آراپشیرویی منظور از نانولوگی کربنی چند دوره عموما به آراپشیرویی انگلیسی ترجمه نمی‌شود و به تعبیری شیکه‌ای چندصدنه نتیج‌داده که در اینجا به‌عنوان نا به روش ساده، سرچین قیمت لیتوگرافی با نانولوگی کربنی وجود دارد که در مقایسه با لیتوگرافی‌های باریک‌تر که توانر معقید به بسیار کارآمدترند و در ابعاد نسبتاً سطع‌الاجرا وسیب یک‌درصدند. از این رو، امروز ساخت ساختر آراپشیرویی برای کاربردهای متنوع به سادگی و به قیمت ارزان قابل انجام است.

در ادامه، با استفاده از نانولوگی کربنی، آراپشیرویی را به‌عنوان یک مدل نوین برای ایجاد خطوط دو بعدی معمولی از نانولوگی کربنی، رسانده است. این خطوط دو بعدی معمولی از نانولوگی کربنی در مقایسه با لیتوگرافی‌های باریک‌تر، کمترین گستره و سریعاً باریک‌تر هستند. این خطوط دو بعدی معمولی از نانولوگی کربنی به‌عنوان یک مدل نوین برای آراپشیرویی به‌عنوان یک مدل نوین برای ساخت ساختر آراپشیرویی است.

- مقدمه

یک جسم سیاه ایجاد زمانی است که تمام رنگ‌های نور تابیده شده به خود به خود جهت و با هر قطعیتی را به طور کامل جذب کرده و هیج مولفه‌ای از نور را باتلاق تکنر می‌کند. در مقایسه موفقیت کربنی این روش کربنی قابل دیدن و در این مقاله، همان طوری که در ادامه خواهیم دید برای آراپشیرویی منظور از نانولوگی کربنی با چگالی کم به جذب بالای 99%, می‌رسیم که در قله به می‌رسم

90

10 1392. دانشگاه صنعتی شیراز
قسمت موهومی گردنه‌یی که مناسب به ضریب چذب ماهی است مقدار بسیار زیادی بین ۶ تا ۷ دارد که برای منظور ما مناسب است. همان‌طوری که در ادامه خواهیم گفتن داده‌ای یک عضو ثبیت شده بین پراکنش با راگ و نور نابسامگی در این آزمایش یک چذبی از طول موج‌های نزدیک به ثابت شده با ثابت شده با تابع ثابت به سرعت نبانی می‌شود.

با انتخاب ثابت شکیکی ۵۰۰ نانومتر که در میانی طول موج‌های مرئی است و به تغییر نسبت بر شدگی به دنبال حالت بهینه می‌رود:

\[T + R + A = 1 \]

این رابطه بین گرانش انتخاب ثابت باعث می‌شود مقدار در مزرع ورودی پراکنش یکی شود، مقدار در انتخاب ساختمان جذب می‌شود و نور مقداری از نور امکان عمل می‌یابد.

۴- تناوب و بحث

همان‌طوری که در یک بخش قبل گفتیم، با انتخاب تناوب شکیکی ۵۰ nm شتاب تا لایه‌ای کمی به تغییر جکالی می‌توان طبق رابطه‌ی زیر مقدار جذب (A) را محاسبه کرد:

\[T + R + A = 1 \]

شکل ۱: آرایه‌ای مربعی با چگالی کم از نانولوله‌های کربنی جدید دیواره‌ی نبانی انتخاب ۵۰۰ نانومتری و چند فقط ۱۰ نانومتری که شکاشفته فیبری برای ۵ میکرون دارد به شیب‌سازی و محاسبه جذب ساختار از استفاده از استیتیما Optiwave

۳- شیب‌سازی

در شکل ۱ منطقه‌ی شیب‌سازی که با مستقل خاکستری نشان داده شده را در نظر می‌گیریم که در آن نمایی از بالای ۱۰ نانومتری یک نانولوله‌ای جدید دیواره را مشاهده می‌کنیم، به منظور جلوگیری از پراکنش از مزرع‌های لبه‌های انتخابی و اتماتیک محاسبه شیب‌سازی را با ۱۵ لایه جاده پوشاندمیم، همچنین برای بررسی مقدار ضخامت ذرمی برای ت발ی رون به نظر دارد، ساختار با به کمک شرط مرزی با یک صورت جابجایی با به پیشنهاد می‌شود بویحای نانولوله‌های طول موج‌های می‌شود. را با نشان می‌ده که پیکان‌ساز رنگی

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد، به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد به عبور ۵ پراکنش بر حسب طول موج نور فرآیند شتاب عاهمگان مختلف در شکل ۱

فیلترگزی‌ی خنثی ترویجی با صورت جابجایی تا به نهایت می‌شود

شکل ۲ پراکنش سخت‌تر (۵) که برای است می‌گیرد ب
(3)

\[I(x) = I_0 e^{-\alpha x} \]

و در گسترده‌ی طول موج‌های با جذب بیش از 99 درصد تقریبی برای این α = 11 μm\(^{-1}\) است (در 5 میکرو‌متر بیش از 99% نور جذب شده است و با توجه به این نمایی، در 1 میکرو‌متر بیشتر نور برای 16 مقدار اول‌الاکس می‌رسد) که در آن شدت نور از طول A و در ساختار، شدت \(I_0 \) شدت نور پس از طول A است. \(\alpha \) مقدار ضریب جذب تقریباً نه مرتی از بالاترین ضریب جذبی که تاکنون گزارش شده بینهایت مربوط به [3] است بیشتر است.

5- نتیجه‌گیری

به کمک آزمایشاتی که از نانولوللهای کربنی که در دایره در هوا و هم‌زمان برخور کرده‌اند 14% توانسته‌ب شده باشد در حدود 99% در یک چهارپایان 60 نانومتری حول طول موج نسبت سپری کرده و با یک نکت، مقدار جذب در قلهٔ خود در مقدار ممتنی در \(\lambda = 0.532 \) nm، ممتنی در \(R = 10^{-4} \) می‌رسیم که در اکثر کاربردها قابل غم‌انجام است. مقدار جذب نیز در به‌هم جهت کوچک و کمتر از 0.1 است و در قلهٔ خود در طول کوچک و کمتر از \(0.5 \) nm، فاصله نیمی‌روید. در نهایت، ضریب جذب بزرگ این دستوارد دریگ این و تحقیق است.

مراجع

شکل 3: نانولولهای بازتابی، عبر و جذب بر حسب طول موج برای ساختار شکل 1 با نسبت برخور کردن 24% جذب بیش از 99% در گسترده طول موج‌های 511 تا 700 نانومتر (تقریباً تمام گسترده طول موج‌های رنگ سبز).