Abstract-Characteristics of photodetectors consisting armchair graphene nanoribbons (a-GNR) channels and asymmetric source and drain contacts, under monochromatic illuminations of various incident energies in the range of mid infrared to solar blind ultra violet, are simulated. Simulations show, for light of incident intensity $10^3$ $W/cm^2$, the photocurrent spectrum in the device with asymmetric leads made of Au- and Ti-contacted graphenes, under no external bias, exhibits a peak of 1.897 $\mu A$, at the energy $E=5.02$ $eV$. This peak corresponds to the quantum efficiency of 60% and the detection responsivity of 13.4 $A/mW$. Polarieties of the local photocurrents alter when the gate-source voltage approaches to the Dirac point, for which the maximum total photocurrent is achieved. Finally, the total device current versus the drain-source voltages obtained under monochromatic illumination, for $V_{GS}=0$, is shown to shift toward negative values in comparison to the dark current. Simulations are performed, using the nonequilibrium Green’s function (NEGF) formalism coupled to the Poisson solver.

Keywords: photodetector; graphene nanoribbon (GNR); nonequilibrium Green’s function (NEGF); photocurrent; quantum efficiency
Solar Blind Ultraviolet Photodetection with Armchair Graphene Nanoribbons and Asymmetric Source and Drain Contacts

Fatemeh Ostovari, Mohammad Kazem Moravvej-Farshi
Fatemeh.ostowary@modares.ac.ir; farshi_k@modares.ac.ir

1 Introduction
Optical and electrical properties of graphene nanoribbons (GNRs) make them promising materials for variety of optoelectronics applications [1]. Recent experiments on photocurrent generation have shown that in the vicinity of the metal/graphene interfaces, where charge inhomogeneities are induced, photoresponses are strong. So, properties of the source/drain metal contacts play an important role in the magnitude of photocurrent, in the absence of any external bias, because of the weak built-in electric field in the graphene channel [2, 3]. This is only possible when the scattering lengths are long and the carrier transport is ballistic throughout the channel. The larger the difference between the source and drain metals work functions the larger the built-in field and so is the photocurrent through the external circuit. Graphene absorption is limited to infrared wavelengths [4]. Nonetheless, GNR-based photodetectors can operate down to ultraviolet wavelengths due to their band gap tunability. However, to the best of our knowledge, characteristics of GNR-based photodetectors with asymmetric source and drain contacts have not been reported in the literature, so far. In this paper, we report the results of our numerical studies on such photodetectors that can operate at deep ultraviolet wavelengths, with high quantum efficiency at zero source-drain and gate voltages.

2 Asymmetric contacts and the built-in potential
Figure 1(a) shows the schematic representation of a photodetector with an armchair GNR (a-GNR) channel and asymmetric source and drain contacts, under the illumination of a monochromatic light. The a-GNR channel is assumed to be thirty unit-cells long (i.e. \( L_{ch} \approx 12.709 \) nm) and ten C-atoms wide (i.e. \( W_{ch} \approx 1.11 \) nm). Experimental and theoretical studies have consistently demonstrated that when graphene of work function \( \Phi_G \) (4.5 eV) contacted to metal of work function \( \Phi_M \), the chemical adsorption (metal doping) on graphene imparts a shift of \( \Delta E_G \) in the graphene Fermi level [2, 3]. This shift for metals like Au, Pd, and Ti with work functions \( \Phi_M = 4.7, 4.65, \) and 4.3, respectively, equals 250, 170, and −230 meV. In other words, Au and Pd make the underneath graphene p-type and Ti makes it n-type. As a consequence of these shifts, the potential steps between the metal-contacted graphene lead and the Dirac point in the a-GNR channel becomes [2,3]:

\[
\Delta V(eV) = \Phi - \Delta \Phi_G \pm 0.0263 V_{GS} - eV_{GS}
\]

wherein (+) and (−) correspond to the sign of the gate to source bias (\( V_{GS} \)) with respect to the Dirac point and \( e \) is the electron charge. For \( V_{GS}=0 \), potential steps for Au/G, Pd/G, and Ti/G leads are \( \Delta V=-50, -20, \) and 30 eV respectively. Employing Poisson solver, we have evaluated the profiles of potentials across the channel, for two cases in which the drain leads are all made of Ti/G and the source electrodes are made of, Pd/G (dashes), and Au/G (solid curve), and compared them with a case in which the source graphene has no metal contact on it (Fig 1.b).

3 Simulation method
Assuming the nearest neighbor tight binding approximation and use of the self-consistent non-equilibrium Green’s function (NEGF) formalism for ballistic transport leads to the photocurrent spectrum, across the device [5]:

\[
I_{ph}(E) = \frac{2e}{\hbar} Tr[H_{k+1,k}(E) - H_{k,k}] G^a_{k+1,k}(E)
\]

where \( i, k \) and \( h \) are the imaginary unit, position of atom in channel and the Planck’s constant, respectively. \( H \) and \( G^a \) are the Hamiltonian and the electrons correlation function:

\[
G^a(E) = G(E)[\Gamma_{a}(E)f_{sd}(E) + \Gamma_{a}^*(E)f_{sd}^*(E) + \Sigma_{ph} G^T(E) \Gamma_{a} G^T(E)]
\]

where \( f_{sd} \) is the source/drain lead Fermi–Dirac function, \( \Gamma_{a} \) represents the broadening function due to the coupling of the source (drain) lead to the channel, \( G \) and \( G^T \) represent the Green function and its adjoint, and \( \Sigma_{ph} \) is the photon self-energy that is related to electron-photon scattering.
rate and is determined by the incident light intensity, \( I_\omega (E) \). One of the key parameters for a photodetector is its quantum efficiency \( \eta = \frac{E f_{\text{ph}}}{e(L_a \times W_a)} \), that is defined as the number of photogenerated carriers that contribute to the current flowing through the external circuit divided by the number of the monochromatic incident photons.

Another important parameter for a photodetector is its responsivity that is defined as the ratio of the output photocurrent to the incident photon power, i.e., \( R = \frac{I_{\text{ph}}}{P_{\text{in}}} = \frac{I_{\text{ph}}}{(L_a \times W_a)} \). Moreover, a vital characteristic for a photodetector that can vary with the externally applied biases and also with the incident light intensity is its dark current \[ I_{\text{dark}} = \frac{2}{h} k T \int (E) \left[ f_s (E) - f_d (E) \right] dE \quad (4) \]

### 4 Simulation results and discussion

Assuming normal monochromatic illumination of constant intensity \( I = 10^3 \text{ W/cm}^2 \), we have spanned the photon energy \( E \) over a wide range mid IR to far solar blind UV region \( (0.1 \text{ eV} \leq E \leq 10 \text{ eV}) \), and simulated the device photocurrent and quantum efficiency, with no external biases. In these simulations, the substrate effect on the channel has been neglected. Figure 2 illustrates the simulated photocurrent spectrums (a) and the corresponding quantum efficiency (b) for the three photodetector structures. The dots-dashes, dashes, and solid curves represent the spectrums for the device having the source terminals made of G, Pd/G, and Au/G, respectively. As can be observed from Fig. 2(a), each photocurrent spectrum exhibits seven peaks in the given energy range that correspond to the allowed transitions between the valence states and conduction states of the a-GNR channel. However, each spectrum has one peak that corresponds to the most probable transition at a particular energy. Similar peaks can be observed in the quantum efficiency spectrums shown in Fig. 2(b), as expected.

The photon energies at which the most probable transitions corresponding to the peak in the quantum efficiency, for the photodetectors whose source electrodes are made of G, Pd/G, and Au/G, equal 3.72, 3.92, and 5.02 eV, respectively. Next, for each of the three photodetectors, we have assumed a single monochromatic illumination of energy at which corresponding photocurrent spectrums has the largest peak, and varied its flux intensity in the range of \( 10^3 \leq I_\omega \leq 10^4 \text{ W/cm}^2 \) and calculated the photocurrent flowing out of the drain contact.

Figure 3 illustrates the \( I_{\text{ph}}-P_{\text{in}} \) (dBm) plots, for the three given photodetectors. The responsivities corresponding to asymmetric source leads G-Ti, Pd-Ti, and Au-Ti that are represented, respectively, by dots-dashes, dashes, and solid curve are 10.4, 11.9 and 13.4 (AmW\(^{-1}\)), respectively.

Now, we investigate the effect of the applied gate voltage on the local and total photocurrent throughout the a-GNR channel for the device, with asymmetric source (Au/G) and drain (Ti/G) leads under biasing conditions of \( V_{GS} = 0 \) and \( V_{GS} = \) (a) \(-80 \text{ mV}\), (b) \(-40 \text{ mV}\), (c) \(-20 \text{ mV}\), (d) \(0 \text{ mV}\), (e) \(20 \text{ mV}\), (f) \(40 \text{ mV}\) and (g) \(80 \text{ mV}\). Color bars indicate the local currents in units of \( \mu \text{A}\).
leads, when under illumination of a monochromatic incident light beam of intensity \(10^3\) W/cm\(^2\) and energy 5.02 eV for \(V_{DS} = 0\). The color bars indicate the local photocurrents in units of \(\mu\)A. As can be observed from all cases depicted in Fig. 4, the photocurrents are localized around the points inside the channel near the source and drain terminals, as expected. For \(V_{GS} = -80\) mV the local current intensity is negative around the source (p-type regime) and positive near the drain (n-type regime). As \(V_{GS}\) becomes more positive, the local current intensities near the source and drain regions both decrease, until they change polarities around the Dirac point, for which the total photocurrent maxima occurs. Figure 5 illustrates the total photocurrent, for the device with asymmetric source (Au/G) and drain (Ti/G) leads, versus \(V_{GS}\). Other conditions are the same as those for Fig.4. As can be observed from this figure the maximum current, for this device under the given conditions, occurs around the Dirac point, which is in accordance to the change of polarities observed for the local currents.

Figure 6 depicts the dark current (dots-dashes) versus the external bias applied between the source and drain leads (\(V_{DS}\)), for \(V_{DS} = 0\). This figure also compares the dark current with \(I_{D}\) vs \(V_{DS}\) characteristics of the device under monochromatic illumination of incident intensities \(10^3\) and \(5 \times 10^3\) W/cm\(^2\). As can be observed from this figure, the \(I_{D}\) vs \(V_{DS}\) curves under illumination are shifted toward negative current values, with respect to the dark current. This is because; the dark current and the photocurrent are in opposite directions.

5 Conclusion

Assuming the nearest neighbor tight binding approximation and employing the self-consistent non-equilibrium Green’s function (NEGF) formalism for ballistic transport we have numerically simulated the photocurrents and quantum efficiencies of photodetectors having a GNR channels of 12.709 nm long and 1.111 nm wide with asymmetric source and drain contacts versus energies of the monochromatic illuminations of fixed incident intensities of 1 kW/cm\(^2\). The n-type drain electrodes for all three devices are assumed to be made of Ti-contacted graphenes (Ti/G), while the source electrodes for two of the three are assumed to be p-type made of Au-contacted and Pt-contacted graphenes (Au/G and Pd/G, respectively). The source electrode for the third device is assumed to graphene with no metals on the top. Simulations show the photocurrent spectrum for the aforementioned photodetectors, obtained in absence of any external bias applied to the device terminals, exhibit their highest peak currents of 1.183, 1.355, and 1.897 \(\mu\)A at \(E = 3.72, 3.92, and 5.02\) eV, respectively. The corresponding, quantum efficiencies are found to be 27.5, 33.2 and 59.5%, respectively. Responsibilities for these three photodetectors under monochromatic illuminations at aforementioned energies and zero applied biases are found to be 10.4, 11.9, and 13.4 A/mW. Simulations also show that the peak in the total photocurrent versus the gate-source voltages occur near the Dirac point for which the local photocurrents across the channels change polarities. Moreover, comparison of the total device current versus the drain source voltages obtained under monochromatic illumination and for \(V_{GS} = 0\), with the dark current obtained under the same biasing conditions has shown that former shifts toward the negative current values because the dark current and photo currents flow in the opposite directions.

References