Performance Improvement of Photonic Crystal Pressure Sensor

Saeed Sakerinezhad, Maryam Pourmahyabadi

Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

s_shakeri_n@eng.uk.ac.ir

Abstract- There is a growing interest in the new science of photonic crystal structures which are finding wide use in various areas such as sensors. In this paper, a novel photonic crystal pressure sensor in which two waveguides are coupled to a ring microcavity is presented. Resonant wavelength of the microcavity depends on the effective refractive index. It should be noticed that the resonant wavelength of the sensor is shifted linearly towards the higher wavelengths region by increasing the applied pressure. The achieved results revealed that the proposed structure presents superior performance in terms of sensitivity and dynamic range (17.5 nm/GPa and 10 GPa) in comparison with the existing schemes.

Keywords: Band gap, Microcavity, Photonic Crystal, Pressure Sensor, Waveguide
1‌- مقدمه‌

در چند دهه اخیر ساختارهای جدیدی با عنوان کریستال‌های نوری توجه محققان را به خود جلب کرده است. کریستال‌های نوری از لحاظ ساختار، بسته به اینکه در یک یا دو سه ستون باشد، بسته به سه دسته یک، دو بعدی و سه بعدی تقسیم می‌شوند. [1] کریستال‌های در بالای امواج الکترومغناطیسی رفتاری مشابه فیلتر نیمه‌رسناها در پارامتر اکترون‌ها از ورامی تهیه‌کننده‌ها ده‌کننده، بدلگونه که همانند بافر مشتق‌هایی در اندک‌ترین نیرو از نیرو ساختار ساختار کریستال نوری نیز امواج نوری در خودمکان به ماده الکترونگی برخوردار است. مرحله بندی مشابه است که نمونه‌های مورد لایه‌ای برای کنترل قسمتی از دیگر ویژگی‌های این ساختارهای مقادیری در پارامتر تداخل الکترومغناطیسی و امکان استفاده از آن‌ها در دامنه‌های بی‌شماری و شیمیایی نامساعد می‌باشد. [7-4]

2‌- فرم‌بندی‌در این رابطه نیما تابث فشار این‌کی می‌باشد. مهم‌ترین این‌های نیما تابث و P1 و P2 در محله بعد می‌باشد. ضریب شکست جدید تحت فشار اعمال شده را محاسبه کنید. با استفاده از روابط فشار، رابطه قبل را می‌توان به فرم زیر تبدیل کرد:

\[
\begin{bmatrix}
\frac{1}{n_{xx}} \\
\frac{1}{n_{yy}} \\
\frac{1}{n_{zz}} \\
\frac{1}{n_{xy}} \\
\frac{1}{n_{yz}} \\
\frac{1}{n_{xz}}
\end{bmatrix} = \begin{bmatrix}
P_{11} & P_{12} & P_{13} & 0 & 0 & 0 \\
P_{12} & P_{22} & P_{23} & 0 & 0 & 0 \\
0 & P_{32} & P_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & P_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & P_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & P_{44}
\end{bmatrix} \begin{bmatrix}
\gamma_{xx} \\
\gamma_{yy} \\
\gamma_{zz} \\
\gamma_{xy} \\
\gamma_{yz} \\
\gamma_{xz}
\end{bmatrix}
\]

که در این رابطه ها نیما تابث فشار این‌کی می‌باشد.

3‌- برای ضرب شکست تحت فشار خواهیم داشت:

\[n = n_0 - (c_1 + 2c_2)\sigma\]

که در این روابط E مدولایسپان‌ یا به‌طور کلی E=120 GPa و V نسبت پواسون V=0.34 می‌باشد. برای سیلیکون خواهیم داشت:

\[V=0.265\]

در یک کریستال نوری، شکاف باند نوری به ویانه‌کردن نیما تابث و P1 و P2 برای کریستال نوری، این تغییرات می‌توانند باعث شوند که به ساده‌سازی کریستال‌های چند بعدی اگر
3- طراحي ساختار حسگر

ساختار حسگر ترايحي شده (شکل 1) از دو موجبر که یک میکروکاواک ترویج شده اند، تشکیل گردیده است. موجبرها با حذف 7 حفره ای حفره بر پیدا و نهم ساختار و میکروکاواک با چنین حفره در مکان یک حلقه هوا به شعاع خارجی 148 nm و شعاع داخلی 114 nm ایجاد شده است. طول این میکروکاواک برای 4915/8nm و 5596/8nm تریب

در ساختار حسگر ترايحي شده (شکل 1) از دو موجبر که یک میکروکاواک ترویج شده اند، تشکیل گردیده است. موجبرها با حذف 7 حفره ای حفره بر پیدا و نهم ساختار و میکروکاواک با چنین حفره در مکان یک حلقه هوا به شعاع خارجی 148 nm و شعاع داخلی 114 nm ایجاد شده است. طول این میکروکاواک برای 4915/8nm و 5596/8nm تریب

3- گریستنال نوری ترايحي شده دارای دو شکاف باند نوری

گریستنال نوری ترايحي شده دارای دو شکاف باند نوری (شکل 2) میکروکاواک کوچک در محدوده 656 نانومتر و دیگری، میکروکاواک باند بزرگی در محدوده 1290 نانومتر (شکل 2) که در این طرح از شکاف باند بزرگ استفاده شده است. شکل 2 نمودار شکاف باند ساختار را نشان می‌دهد.

۴- شبیه‌سازی و تحلیل نتایج

برای بررسی اثر فشار بر روی طول موج تشدید شده در نور از سمت چپ وارد موج ترايحي شده است. استفاده شده است. فروش میکروکاواک از روش FDТ استفاده شده است. برای بررسی اثر فشار بر روی طول موج تشدید شده در نور از سمت چپ وارد موج ترايحي شده است. استفاده شده است.
نتیجه‌گیری

در این مقاله یک نوع جسم فشار بر منابع کریستال نوری دو بعدی مورد تحلیل و بررسی قرار گرفته است. جسم از دو جمعه جامد توزیع شده یک میکروکاواک تشكیل گردیده است. با اعمال فشار طول موج نسبت شده در میکروکاواک به صورت خلاصه شده که این مسیر می‌باشد. در بیان کیفیت حساسیت یک دو- بعدی نیم‌یافته برابر با حساسیت ان. Q=2151/10 گیگاپاسکال. حساسیت ان. Q=2151/10 و رنگ دینامیکی 1000 میکروکیلوگالسکال طول موج تنگی در ارتفاع صفر تا 10 گیگاپاسکال. این امر اساسی ترین ایده در مورد سنسورهای فشار کریستال نوری می‌باشد. در بیان کیفیت حساسیت 17/5nm/GPa نوری می‌باشد. حساسیت در جدول 1، محمدیان طرح همبستگی و ارتباطی بین پیشنهادات و مناسبات در حساسیت یک‌گانه وار. در جدول 1، مناسبات طرح همبستگی و ارتباطی بین پیشنهادات و مناسبات در حساسیت یک‌گانه وار.

جدول 1: مقایسه تابعی طرح بیشتری با طرح‌های موجود

<table>
<thead>
<tr>
<th></th>
<th>حساسیت (nm/GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5/82</td>
</tr>
<tr>
<td>10</td>
<td>11/97</td>
</tr>
<tr>
<td>150</td>
<td>15/00</td>
</tr>
<tr>
<td>1500</td>
<td>12/15</td>
</tr>
<tr>
<td>15,000</td>
<td>17/5</td>
</tr>
<tr>
<td>187,000</td>
<td>17/5</td>
</tr>
<tr>
<td>187-2341</td>
<td>17/5</td>
</tr>
</tbody>
</table>

منابع:

مراجع: