Performance Improvement of Photonic Crystal Pressure Sensor

Saeed Sakerinezhad, Maryam Pourmahyabadi
Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
S_shakeri_n@eng.uk.ac.ir

Abstract- There is a growing interest in the new science of photonic crystal structures which are finding wide use in various areas such as sensors. In this paper, a novel photonic crystal pressure sensor in which two waveguides are coupled to a ring microcavity is presented. Resonant wavelength of the microcavity depends on the effective refractive index. It should be noticed that the resonant wavelength of the sensor is shifted linearly towards the higher wavelengths region by increasing the applied pressure. The achieved results revealed that the proposed structure presents superior performance in terms of sensitivity and dynamic range (17/5nm/GPa and 10GPa) in comparison with the existing schemes.

Keywords: Band gap, Microcavity, Photonic Crystal, Pressure Sensor, Waveguide
1. مقدمه

در چند دهه اخیر ساختارهای جدیدی با عنوان کریستال‌های نوری مطرح شدند که قابل استفاده در ابزارهای پیشرفته از جمله ابزارهای الکترونیکی محسوب می‌شوند. این کریستال‌های نوری از لحاظ ساختاری و اپتیکی به‌طور انجامده در یک یا دو سرشته مشابه باشند که به ترتیب به سه دسته یک بعدی، دو بعدی و سه بعدی تقسیم می‌شوند. این کریستال‌های نوری در برخی از الگوهای الکترونیکی رفتار مشابه فیلتر نیمه رسانا در برای کنترل الکترون‌ها از خود نشان می‌دهند. بنابراین که همانند با دانشمند آنژی در نیمه رسانا، در ساختارهای کریستال‌های نوری از امکان پذیرستن تمرکز انرژی در برابر یک نوار الکترونیکی بیشتری نیز برابر با نوار امکان پذیرستن و تجربیات مورد استفاده از چنین الگوهای نوری با سایر کریستال‌های نوری از جمله نوری‌رفتاری و گیرنده‌ی میکروکنترلر و امکان استفاده آنها در ذخیره‌سازی و شرایط سختی می‌باشد.

2. تحلیل نظری اثر فشار

این تحقیقات می‌تواند نشان دهنده خواص فشار باشد که ضریب شکست در راستای ایج نیز با شدت ضربه در زیست‌محیطی می‌باشد. در این منطقه، خواص فشار در برابر این بیشتر نیز در دو بعدی و سه بعدی تقسیم می‌شوند. این کریستال‌های نوری در برخی از الگوهای الکترونیکی رفتار مشابه فیلتر نیمه رسانا در برای کنترل الکترون‌ها از خود نشان می‌دهند. بنابراین که همانند با دانشمند آنژی در نیمه رسانا، در ساختارهای کریستال‌های نوری از امکان پذیرستن تمرکز انرژی در برابر یک نوار الکترونیکی بیشتری نیز برابر با نوار امکان پذیرستن و تجربیات مورد استفاده از چنین الگوهای نوری با سایر کریستال‌های نوری از جمله نوری‌رفتاری و گیرنده‌ی میکروکنترلر و امکان استفاده آنها در ذخیره‌سازی و شرایط سختی می‌باشد.

3. تحلیل نظری اثر فشار

این تحقیقات می‌تواند نشان دهنده خواص فشار باشد که ضریب شکست در راستای ایج نیز با شدت ضربه در زیست‌محیطی می‌باشد. در این منطقه، خواص فشار در برابر این بیشتر نیز در دو بعدی و سه بعدی تقسیم می‌شوند. این کریستال‌های نوری در برخی از الگوهای الکترونیکی رفتار مشابه فیلتر نیمه رسانا در برای کنترل الکترون‌ها از خود نشان می‌دهند. بنابراین که همانند با دانشمند آنژی در نیمه رسانا، در ساختارهای کریستال‌های نوری از امکان پذیرستن تمرکز انرژی در برابر یک نوار الکترونیکی بیشتری نیز برابر با نوار امکان پذیرستن و تجربیات مورد استفاده از چنین الگوهای نوری با سایر کریستال‌های نوری از جمله نوری‌رفتاری و گیرنده‌ی میکروکنترلر و امکان استفاده آنها در ذخیره‌سازی و شرایط سختی می‌باشد.

4. تحلیل نظری اثر فشار

این تحقیقات می‌تواند نشان دهنده خواص فشار باشد که ضریب شکست در راستای ایج نیز با شدت ضربه در زیست‌محیطی می‌باشد. در این منطقه، خواص فشار در برابر این بیشتر نیز در دو بعدی و سه بعدی تقسیم می‌شوند. این کریستال‌های نوری در برخی از الگوهای الکترونیکی رفتار مشابه فیلتر نیمه رسانا در برای کنترل الکترون‌ها از خود نشان می‌دهند. بنابراین که همانند با دانشمند آنژی در نیمه رسانا، در ساختارهای کریستال‌های نوری از امکان پذیرستن تمرکز انرژی در برابر یک نوار الکترونیکی بیشتری نیز برابر با نوار امکان پذیرستن و تجربیات مورد استفاده از چنین الگوهای نوری با سایر کریستال‌های نوری از جمله نوری‌رفتاری و گیرنده‌ی میکروکنترلر و امکان استفاده آنها در ذخیره‌سازی و شرایط سختی می‌باشد.
شکلت ۲ نمودار شکاف شده بر مبنای TM بر حسب فرکانس به بخش شده.

شکلت ۳ نمودار تغییرات طول موج بر حسب فشار اعمال شده.

شکلت ۴ نمودار تغییرات طول موج بر حسب فشار را نشان می‌دهد که باینگر رابطه خطی مناسب بین فشار و طول موج تشکیل در محدوده ذکر شده می‌باشد. با توجه به رابطه خطی مذکور، می‌توان پارامتر حساسیت به به صورت میزان تغییرات طول موج در خروجی نسبت به فشار اعمالی (ΔL/ΔP) تعیین می‌گردد. از طریق شیب خط در شکلت ۳ محاسبه نمود.

\[\frac{\Delta L}{\Delta P} = \frac{1834 / 33nm - 1649 / 33nm}{1371.45} = 17.5 \text{ nm} / \text{GPa} \]

در حسگر پیداهدهی، مقدار متوسط ضرب کیفیت (r/a) در شکل ۱ نشان داده شده است.

کریستال نوری طراحی شده دارای دو شکاف باند نوری تا موج فرکانس کوچک در محدوده ۶۵۶ تا ۶۷۱ نانومتر و دیگری، شکاف باند نوری در محدوده ۱۲۹۰ تا ۱۲۹۰ نانومتر (می‌باشد، که در این طرح از شکاف باند نوری استفاده شده است. شکلت ۳ نمودار شکاف شده را نشان می‌دهد.

شیبی سازی و تحلیل نتایج

برای برسی اثر فشار بر روی طول موج تشکیل شده در میکروکاکاس از روش FDTD میکروکاکاس اکتیو علت دارد به‌طور استادیه شده است. نور از سمت چپ وارد موجیر اول شده و آشکار ساز در اندهی سمت راست موجیر دوم، نور ترکیب شده را آشکار می‌کند. در بخش جزئی از آن، در اینجا دیده می‌شود که با تغییر فشار در طول فرکانس شده است.
5- نتیجه‌گیری
در این مقاله یک نمونه حسگر فشار بر منیا کریستال توری دو بعدی مورد تحلیل و بررسی قرار گرفته است. حسگر از مو جامد ریزی توزیع شده یک میکروکاکوس تکنیک گردده است. با عمال فشار طول موج تشدید شده در میکروکاکوس به صورت خلا افزایش یافته که این امر اساسی برای این مورد سنسورهای فشار کوانتومی می‌باشد. ضرب کیفیت حسگر پیشنهادهای، حساسیت $Q = 12,5 / \text{nm/GPa}$ حساسیت AN محدوده دیدنی این $10 \,$ GPa، نیازبندینه نیاز همبسته می‌باشد. که این حسگر، از عملکرد بهتری در فاصله با طرح‌های ارائه شده کاملاً برجواد است.

مراجع

جدول1: مقایسه نتایج طراحی پیشنهادی با طراحی موجود

| رنگ | ضریب کیفیت دیدنی | حساسیت (nm/GPa) | جدید | موجود |
|-----|----------------|----------------|
| Stomeo [1] | 5 | 19/3 | 5 | 5/3 |
| Olyaee [4] | 3 | 46/7 | 3 | 15 |
| Olyaee [5] | 1 | 150 | 1 | 100 |
| Krishnan [3] | 2 | 5/3 | 2 | 12 |
| طرح پیشنهادی | 10 | 187/2 | 10 | 100 |