ساخت توری گام بلند بر روی موجبر پلیمری آلاینده به رنگینه آزو با استفاده از روش رنگ پریدگی نوری

سروش مهاجری ناو، عزالدین مهارانی، محمدرضا شریف مهر و محسن کوهرکان

ایران، تهران، دانشگاه شهید بهشتی، بیهوشکده لیزر و پلاسم، آزمایشگاه فوتونیک مواد آلی و پلیمرها

چکیده - برای ساخت توری، ضربی‌شکست هسته‌ای موجبر به وسیله یک لیزر دوبودی با طول موج 473 نانومتر و بهره‌گیری از یک پریدگی رنگ در نوارهای موجبر توری فیبری با طول نفوذی، نوری هایبی در یک ماده‌ای از مرتبهی 100 میکرومتر را می‌توانند توری موجبر ایجاد کنند. این توری از طریق توربوزیئونیک و در میان PVA-PMMA-DR1 استفاده شده است. پس از ایجاد توری، نور در روش توربوزیئونیک وارد موجبر شده و طیف معوری مربوط به این توری یا پس از به‌وسیله طیف‌سنج مورد بررسی قرار گرفته است. ارزان بودن و آسانی ساخت این کار تجربی می‌باشد.

کلید واژه - توربوزیئونیک، نوری گام بلند، رنگ پریدگی نوری، موجبر ایتیکی

Fabrication of Long Period Grating on Azo Dye-doped Polymer Waveguide Using Photobleaching Method

Soroush Mohajeri Nav, Ezedin Mohajerani, Mohammad Reza Sharifimehr and Mohsen Kouhkan

Organic Materials & Polymers Photonics Laboratory, Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.

Abstract- In this article, for grating fabrication, the waveguide core refractive index is modulated using diode laser with 473 nm wavelength and the photobleach phenomenon, using this method, grating with pitch size in order of 100 micrometers was fabricated using point-by-point writing method. In order to fabrication of waveguide core and cladding, PMMA-DR1 guest-host system and PVA polymer is used, respectively. After fabrication of grating on waveguide, light is coupled into the waveguide using a prism and transmission spectrum of the fabricated grating was investigated using a spectrometer. The advantages of this experimental work is inexpensive and easy to build.

Keywords: Long period grating, Optical waveguide, Photobleach, Prism coupling.

1325

این مقاله در صورتی دارای اعتبار است که در سایت www.opsi.ir قابل دسترسی باشد.
مقدمه
امروزه نیاز به انتقال حجم بیشتری از اطلاعات در سرعت بین زمان ممکن، بشر را به سمت استفاده از تکنولوژی‌های مخابرات بی‌سوز ساخته است. هنگامی که دیگر عامل عیرفانی جلوگیری از صحبت مربوط به تکنولوژی‌های بی‌سوز نرانی، نیاز این افزونه به حسگرها مختل می‌کند. بنابراین استفاده از تکنولوژی‌های مخابرات بی‌سوز که در مورد سفارت مخابرات توزیع و سیستم‌های انتقال کوچک، می‌تواند به خوبی کار کند.

1- تعریف

دی‌ال‌دي‌ با (Diadic) یا در دو ضریب کلیت به این صورت تعریف می‌شود که با توجه به دو کلیت اصلی (A و B) به صورت:

\[
\Delta \beta(m) = \beta_0 - \beta(m) = \frac{2\pi}{n} \left(n_{eff} - n_{cl} \right)
\]

\[
\lambda(m) = \left(\frac{\Delta \beta(m)}{\Lambda} \right)\lambda
\]

این تعریف برای استفاده در ساخت و ساز نیاز به اینکه دو کلیت اصلی به شکل قرار گرفته باشند و هر دو کلیت اصلی به صورت قرار گرفته باشند.

2- بخش نظری

در این قطعات عموماً با پرتوهای هسته‌ای موج، ساختار ضریب شکست متقارن در آن ایجاد می‌شود. این تطبیق ممکن است ایده‌های شب‌های طبیعی مربوط به هسته، به مه‌جهت در می‌آید که در ماه‌های هسته‌های بزرگ که بزرگ می‌شود، نیاز به استفاده از این ایده‌های شب‌های طبیعی مربوط به هسته است.
شکل ۴ ترتیب قرار گرفتن لایه‌ها توری ایجاد شده بر روی هستنی موکر و روش توزیع تور به داخل موکر را نشان می‌دهد. همانطور که مشاهده می‌شود، در این نمونه قرار دادن تور با داخل موکر بروز و از آن خارج می‌کنند. این روش توزیع تور در PMMA-DR1 ۴۸۸ نانومتر است. که هم به طول می‌برد ما تمریدی است. برای لیزر توسط موکراله رنگ‌گیری چنین گذشته و به بهبود ٓشدن شدت تور فوری موکراله رنگ‌گیری تخرب شده و کوچکتری می‌شود و ضرب‌اندیش برتود به نواحی نوردیه شده به خاطر تغییر در ساختار موکراله کاهش پیدا می‌کنند و بدین ترتیب ضرب‌اندیش موکرار مخلوط می‌شود. در محله آمرینکوبیالی موکرار مشابه با بیوستی پاپینی موکراله با تغییر دیافرما منش و ناحیه است. لیپوما-دوپریو برای نوری موی استفاده، از اشکال‌دایی خوبی استفاده شده است.[4] برای ایجاد توری هایی به نکاتی مانند نشان دهنده نیروی ضرب‌اندیش است که در اینجا از روش می‌پذیرفته برای این منظر استفاده شده است.[5] ۲-۲ نتایج تجربی

مقادیر ضرب‌اندیش هستنی مشابه با پوسته بی بزرگی و روابط قرار می‌گیرد ضرب‌اندیش موثر است و با ضرب‌اندیش کننده‌ی طبیعی مشابه کرده است.

در شکل ۵ نمونه‌ای از توری‌های ایجادشده بر روی هستنی موکر که توسط ۱۵۰۲ و ۴۹۵۱۹ به دست آمده‌ای توجه نمود که ضرب‌اندیشی که در طول قطر گیرنده که از کنترل‌گیرنده در تغییر قرار می‌گیرد ضرب‌اندیش موثر است و با ضرب‌اندیش کننده‌ی طبیعی مشابه کرده است.

برای ساخت موکراله ابتدا یک لایه PVA با ضخامت ۳ میکرونی برای ایجاد پوسته موکر موی پوسته‌ای لایه‌شنا شفاف چربی بر روی زباله‌ای (لام) شیبیده شد. به دلیل حساسیت جواب آرامش به ضرب‌اندیشی پوسته نمونه به صورت ۲۴ ساعت در کورهایی با دمای ۵۳ درجه قرار داده شد. تا حلال آن به طور کامل نوری شده; سپس هستنی موکری به عنوان PMMA-DR1 یک لایه‌کننده ۵ میکرونی استفاده کرده است. سپس لایه‌ی PVA با ضخامت ۳ میکرونی بر روی لایه‌ای لایه‌شناسی فورسی بر روی لایه‌ی ایجاد شد. با منظور تغییر حلال، این ساختار نیز به صورت ۱۲ ساعت در کورهایی با دمای ۵۳ درجه قرار داده شد. در این مرحله توری مورد انتظار ایجاد شده از روش بی‌توجه به نقطه و بی‌توجه به برداری لایه‌کننده با طول موج ۴۷۷ نانومتر بر روی هستنی موکری ایجاد شد.

شکل ۴ ساختار نمونه و توری ایجاد شده بر روی هستنی موکر.
از طول موج‌ها در محدوده مذکور می‌تواند به داخل موج‌ریز و تحلیل طبیعی خروجی نمودار مشخص پرگرایی از طول موج‌های توپولوژی برخی از موج‌ریز به صورت شکل (۶) به‌دست آمد. این شکل نشان می‌دهد که با انجام توری های گرمایی به‌دلیل متفکر می‌توان نواحی طول موجی می‌تواند مشاهده شود. با انجام توری های ساختمانی توری های عمودی مشابهی داشته و با علاوه‌داری مراقبی همچون آسان ساخت، ارزان بودن و در دسترس بودن می‌باشد.

مراجع

در شکل (۶)، نمودار مقایسه‌ی عملکرد سه توری مختلف با گام‌های ۵۵۵ و ۵۴۵ و ۲۵۰ میکرون آورده شده است. در این شکل، محرور عمودی نمودار، درصد عبور طبیعی‌ای مختلف منبع توری را نشان می‌دهد. همانطور که مشاهده می‌شود، با افزایش گام توری، طول موج مجزا ناحیه‌ی مثبت شده است. طول موج‌های بندentry جایا می‌شود بنابراین برای حدف محدوده طول موج‌های مورد نظر، می‌توان گام‌های متناظر با همان محدوده طول موج‌ها را بر روی موج‌ریز انجام نمود.

نتایج حاصل از توری‌های ساخته شده در این کار تجربی با توری‌های دیگر قابل مقایسه بوده و دارای مراقبی همچون ارزانی، سادگی و در دسترس بودن روش ساخت می‌باشد. در شکل ۷ نمونه از نتایج کارایی مشابه را می‌پیشنهاده که به‌دست در این نمودار هم با اندازه‌گیری گام توری، طول موج مرکزی بسته موج‌های برگزیده‌ی حاکم می‌شود.

نتیجه‌گیری

با استفاده از یک لیزر دیده‌بینی با طول موج ۴۷۳ نانومتر و به روش گینگ‌بریدگی گونه توری‌های گرمایی با گام‌های ۵۵۵ و ۴۴۰ و ۲۵۰ میکرون بر روی هسته‌های موج‌ریز انجام شد، با توزیع طیفی