Fabrication of Long Period Grating on Azo Dye-doped Polymer Waveguide Using Photobleaching Method

Soroush Mohajeri Nav, Ezedin Mohajerani, Mohammad Reza Sharifimehr and Mohsen Kouhkan

Organic Materials & Polymers Photonics Laboratory, Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.

Abstract - In this article, for grating fabrication, the waveguide core refractive index is modulated using diode laser with 473 nm wavelength and the photobleach phenomenon, using this method, grating with pitch size in order of 100 micrometers was fabricated using point-by-point writing method. In order to fabrication of waveguide core and cladding, PMMA-DR1 guest-host system and PVA polymer is used, respectively. After fabrication of grating on waveguide, light is coupled into the waveguide using a prism and transmission spectrum of the fabricated grating was investigated using a spectrometer. The advantages of this experimental work is inexpensive and easy to build.

Keywords: Long period grating, Optical waveguide, Photobleach, Prism coupling.
1- مقدمه
امروزه نیاز به انتقال حجم بالایی از اطلاعات در سرعت‌برین زمان ممکن، بشر را به سختی‌سازی انتقال داده‌های مخابراتی تهدید می‌کند. این تهدید از دیگر عوامل پیش‌رفته در صنعت می‌باشد که در پشتیبانی از تکنولوژی‌های نوری، پیام‌رسانی اینترنت شیفره‌برداری به کمک حسگر از مخابرات و حسگر حس‌پذیر است.

2- بخش نظری
در این قطعات عملی‌اکثر تکنولوژی‌های موج‌برده هستند. با بازخوانی زمینه‌بندی این داستان، به چشم می‌رسد که تکنولوژی‌های نوری با جهت‌گیری به نور پیام‌رسانی اینترنت شیفره‌برداری به کمک حسگر از مخابرات و حسگر حس‌پذیر است.

Vengsarkar ١
شکل ۱) ترتیب قرار گرفتن لایه‌ها توری ایجاد شده بر روی هسته مویور و روش تزییز نور به داخل مویور را نشان می‌دهد. همان طورکه مشاهده می‌شود دو ماده‌که بالای نیاز قرار دادن نور را به داخل مویور توری کرد از آن خارج می‌کنند، این روش تزییز نور به PMMA-DR1 در طول موج 488 ناپدید است. در این فرآیند نور می‌تواند در دو روند اثر داشته باشد. ۱- اثر در سطح مویور پلی‌پروپیلن. در این مقاله برای نور مورد استفاده، لامپ حالت-دوتروم برای وسایل اشکال انرژی خروجی استفاده شده است [4]. برای ایجاد توری هایی با گام‌های مناسب باید تغییر ضریب شکست این ماده را در بین جفت از روش پلی‌پروپیلن ایجاد این منظور استفاده شود [5].

۲-۲ نتایج تجربی

مقدار ضریب شکست هسته و پوشت به ترتیب ۱۵۰۳ و ۱۴۹۵ به دست آمده است. برای انجام تغییرات ضریب شکستی که در روابط قرار گیرد، ضریب شکست موتر است و با ضرایب شکست از داده‌های نظر در میانگین است.

شکل ۵) نمونه‌ها از توری‌های ایجاد شده بر روی هسته مویور که توسط در شکل (۳) پلی‌پروپیلن به میکروریور گرفته شده است.

در شکل (۴) تصویر میکروسکوپی چند نمونه از توری‌های گام بلند با گام‌های مناسب مشاهده می‌شود. در کامت از این توری‌ها، محدوده طول موج مربوط به خود را در طیف خروجی حذف می‌کنند. برای لایه‌های نیاز نور نیز تور نیز از پایه منحنی بی‌نیم در حدود ۱۲۰ ناپدید استفاده شده است. نتایج این می‌توان فاصله شیارهای توری دارای خطای حدودی از مرتباً ۱۰۰ ناپدید می‌باشد.

۲-۲-۱ مواد مورد استفاده و ساخت نمونه

برای پوشینه مویور از پلی‌پروپیلن و PVA در ۴۵ درصد شکستگی شده است. این پوشینه در آب ۹۰ درجه بحرانی حلال می‌شود. ساخت شیمیایی این ماده در شکل (۲) اورده شده است.

شکل ۲) ساخت شیمیایی پلی‌پروپیلن و PVA

برای هسته مویور از سیستم مهندسی-هایبرید PMMA در (۵) درصد اورده شده که در آن، پلی‌پروپیلن (PVA) به علت منفی نگاره و زنگی‌های دیگر ایجاد شده است. این پوشینه با در کمربندی دیواره در حال مسترک شده است. ساخت شیمیایی این مواد نیز در شکل (۳) اورده شده است.

شکل ۳) ساخت شیمیایی پلی‌پروپیلن و PVA

برای ساخت مویور ابتدا یک لاک PVA با شرایط میکروتیم، برای ایجاد پوشینه مویور PVA در لایه‌های خرچنگی بر روی زیرلاند ایجاد می‌شود. در دیل حساسیت جواب آمیزی به ضریب شکستی پوشینه، نمونه به حدود ۲۵ ساعت در گاز روی آمیز شده تا خارج شده بوزی و سپس هسته مویور که با ضخامت حدوداً ۵ میکرون ترکیب شده است. در شکل ۴) نمونه‌های PVA در پوشینه مویور با شرایط C۱۱ به میکروریور گرفته شده است.

شکل ۴) نمونه‌ها از توری‌های ایجاد شده بر روی هسته مویور.
از طول موج‌ها در محدودی‌مندی مربوط به دخل موج‌بری و تحلیل طیف خروجی بوسیله طیف‌سنج، نموداری از طول موج‌های عبری از موج‌بری به صورت شکل (۶) به‌دست آمده. این شکل نشان می‌دهد که با ایجاد توره‌های با کامیاب ترین نواحی طول موجی مورد نظر مشاهده شده که طول موج‌های مختلف با یکدیگر را به نتایج مشابه کردند. کار تجربی را با نتایج مشابه مقایسه کرده و دیدیم که توره‌های ساخته‌شده، عمیقاً مشابه داشته و به‌علاوه دارای مرکب‌های همچون آسانی مختلفی از بدن و در دسترس بودن می‌باشد.

مراجع

نتایج حاصل از توره‌های ساخته شده در این کار تجربی با توره‌های دگر نوع مقایسه بوده و دارای مرکب‌های همچنین ارزانی ساخت‌سادگی و در دسترس بودن روش ساخت می‌باشد. در شکل (۷) نموداری از نتایج کارهای مشابه را می‌پیوندها. هم‌مانند که بیان است در این نمودار هم با افزایش گام توره، طول موج مرکزی بسته نمودار می‌شود. می‌توان گام‌های متنوعی بنا به نیاز به‌کار گرفتن موج‌های برگزیده اجرا کرد.

![شکل ۷: نمودار مربوط به توره‌های مختلف با ۲۵۵ میکرو متر و ۲۶۰ میکرو متر](opsi.ir)