Determination of the optical constants for Cerium-doped Vanadium pentoxide thin film from reflectance spectra

N. Kasra, F. E. Ghodsi*, S. S. Falahatgar, B. Etemadi

Department of Physics, Faculty of Science, University of Guilan

Abstract- in the present work, the calculation of thickness and optical constants of cerium doped vanadium pentoxide thin films prepared by sol-gel method on glass substrates are presented using single reflection spectra. In order to obtain a suitable fitting for reflection spectra, the classical Drude-Lorentz model has been used for the parametrized dielectric functions. The best fitting parameters for simulating of reflection spectra have been determined by Levenberg-Marquardt optimization method. The simulated reflectance from the retrieved optical constants and thickness are in good agreement with experimental data.

Keywords: Thin film V_2O_5, Reflectance, optimization, dielectric function
ضریب خاموشی k ضخامت لایه‌ها به طور همزمان در ناحیه طول موج $100 - 400$ تیمیتین به است. است

2- مدل سازی و روش اندازه‌گیری

یک روش عملی برای توصیف نتایج این مشاهده فیلترهای نازک استفاده از روابط پادشاهی کلاسیکی بر مبنای تابع دی‌تگریک است. پیکی از قبیل تین و بر کاردینال رابطه پادشاهی، رابطه تابع دی‌تگریک دورود-لوزنر

است که بر اساس تعامل بین نور و ماده است. این رابطه در معادله (1) نشان داده شده است.

$$E = E_0 + \sum_{j=1}^{n} \frac{f_j E_0^2}{E_{ij}^2 - E^2 + iE_j E}$$

(1)

پارامترهای ψ_j به ترتیب ثابت تابع d_j دی‌تگریک در فناوری بازیل شیمیایی بالا، مانند نوسانگر، قدرت و

پیشیاب باده نوسانگر است که به عنوان عامل دیگری شناخته شده است. علت این روابط به دلیل قانون جذب که

شامل گزارش دو جفت است. جمعه کمک به مدل درود پارامتر چگال حامل مربوط به اثری با قابلیت E_p دی‌تگریک

مختلط به صورت $E = E_0 + iE_r$ که به اشکال ماده به امواج الکترومغناطبی را به صورت تابع از ارتفاع فوتون با

طول موج λ توصیف می‌کند ضخامت دو شبکه حقیقی و

موهمی E_λ. قسمت‌های حقیقی و موهومی ضریب شکست مختلط عبارتند از $k(\lambda)$ و $n(\lambda)$ که به تابع‌های مربوط در (2) نشان داده شده است.

$$\begin{align*}
 n(\lambda) &= \left(\frac{\varepsilon_1 + \varepsilon_2}{2} \right)^{1/2} \\
 k(\lambda) &= \left(\frac{-\varepsilon_1 + \varepsilon_2}{2} \right)^{1/2}
\end{align*}$$

(2)

طیف بازتاب (R) در فرود نماد برای نمونه‌ها بر طبق (3) به صورت ثابتی از پنجره‌های فیلتر d، ضریب شکست بست (S) طیف نور خاموشی k است. $$n(\lambda)$$.

S و k (1) نشان داده شده است.
پایان‌نامه گرایی شده و مقدار محاسبه شده است

typeface-1

\begin{equation}
O(x, y, E_0, E_p, E_c, d) = \sum (R_{\text{meas}} - R_{\text{calc}})^2
\end{equation}

dرباره فوق طبق رابطه R_{calc} و R_{meas} به ترتیب طرف بازتاب اندازه‌گیری شده و شیب‌سازی شده با پارامترهای برآوردی با شیب‌سازی نواحی مختلف هدف منحني مشاهده نظریه شکست و خاموشی تخمین زده می‌شود.

2-1- بحث و نتایج

طرح بازتاب اندازه‌گیری شده و شیب‌سازی شده با پارامترهای برآوردی با شیب‌سازی نواحی مختلف هدف منحني مشاهده نظریه شکست و خاموشی تخمین زده می‌شود.

جدول 1(1) پارامترهای برآوردی در الکتریک مدل

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>pure</th>
<th>0.5 Ce</th>
<th>1 Ce</th>
<th>1.5 Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_p</td>
<td>24</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>E_t</td>
<td>24</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>f</td>
<td>23</td>
<td>22</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>E_0</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Γ</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>d (nm)</td>
<td>285</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
</tbody>
</table>

مقایسه نتایج نشان داد که نمونه‌های Ce% از (نمونه a) بازتاب بیشتری را در مقایسه با نمونه‌های Ce% از (نمونه b و c) به نمایش می‌گند. مقدار Γ که در شکل (1) دیده شده است با پارامترهای نواحی مختلف هدف منحني مشاهده نظریه شکست و خاموشی تخمین زده می‌شود.

ملاحظه که از جدول (1) مشاهده می‌شود افزایش پیشرفت

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>pure</th>
<th>0.5 Ce</th>
<th>1 Ce</th>
<th>1.5 Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_p</td>
<td>24</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>E_t</td>
<td>24</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>f</td>
<td>23</td>
<td>22</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>E_0</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Γ</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>d (nm)</td>
<td>285</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
</tbody>
</table>

به نمایش می‌گند. مقدار Γ که در شکل (1) دیده شده است با پارامترهای نواحی مختلف هدف منحني مشاهده نظریه شکست و خاموشی تخمین زده می‌شود.

ملاحظه که از جدول (1) مشاهده می‌شود افزایش پیشرفت

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>pure</th>
<th>0.5 Ce</th>
<th>1 Ce</th>
<th>1.5 Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_p</td>
<td>24</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>E_t</td>
<td>24</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>f</td>
<td>23</td>
<td>22</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>E_0</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Γ</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>d (nm)</td>
<td>285</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
</tbody>
</table>
یافته است. به عبارتی جدب این ناحیه کاهش یافته است. نیز قله‌های ظاهر شده در ضریب
خاموشی با پارامترهای درود - لورنتز بدست آمده از
الگوریت بهینه‌سازی در توقیف است.

3- نتایج گیری

نتایج بهینه‌سازی الگوریت لاریکرگ - مارکوارت با مدل
فیزیکی درود - لورنتز جهت تعیین ثابت‌های اینک
فیلیم‌های نازک و وانادیم االیده شده با سریم به روش سل
زل با استفاده از تک طیف بازتاب نشان می‌دهد، افزایش
مقدار آلیای، بازتاب‌گذگی و ضریب شکست را کاهش می-
دهد و همچنین باعث افزایش ضخامت لایه نازک گردیده است.

| مراجع |
|-------|-----------------|-----------------|

![گراف 1](شکل 1) ضریب شکست فیلیم‌های نازک و وانادیم با غلظت‌های Ce

همان‌گونه که از شکل 2 مشاهده می‌شود ضریب شکست
نمونه‌ها از 500 تا 1000 فوتا مشابه دارد. با افزایش
Ce طول موج در حال کاهش هستند. با افزایش غلظت
ضریب شکست در مجموع کاهش یافته است که با تابع
مربوط به تغییرات بازتاب‌گذگی در شکل (1) در توقیف است
که با افزایش زیری میزان پراکندگی افزایش و به
مقدار طیف بازتاب کم شده است. از مشاهده
می‌شود (k) برای دو نمونه a و p در محدوده طول
موج 400 تا 500 نمودار ن منفی همچنین تمام
نمونه‌ها در ناحیه 500 تا 1000 نمودار C که

![گراف 2](شکل 2)