بررسی فاز هندسی بین دو کیوبیت بر حسب فاصله با استفاده از مدل کالگرو-موزر

کچیده

در این مقاله تغییرات فاز هندسی برای یک سیستم دو کیوبیتی بر حسب فاصله بین کیوبیت‌ها، هنگامی که کیوبیت‌ها تحت تأثیر میدان‌های مغناطیسی مختلفی باشند، در مدل دیزالوشینسکی (DM) و هالیانگرز-موریا (XX) مطالعه قرار می‌گیرد. نشان داده شده که وقتی جفت شدیدی (J) را در دو مدل کالگرو و موزر بررسی کنیم، فاز هندسی برای سیستم مذکور می‌تواند به افزایش فاصله بین کیوبیت‌ها افزایش یافته و به یک نقطه ی بیشینه برسد و احتمالاً پس از یک افت کوتاه برای فاصله طولانی بدون تغییر بماند. همچنین نشان داده خواهد شد که افزایش انداره میدان، باعث کاهش فاز هندسی بر حساب فاصله می‌شود.

کلید واژه‌ها: فاز هندسی، کیوبیت، مدل کالگرو-موزر

Studying the geometric phase for a two-qubit model in terms of distance

Amniat-Talab, Mahdi; Rangani Jahromi, Hossein; Abbasi, Leyla

Department of Physics, Faculty of sciences, Urmia University, P. B. 165, Urmia, Iran

Abstract

We study the variation of geometric phase with distance for a two spin-1/2 system with Dzyaloshinskii-Moriya (DM) interaction, while one of the spins is driven by a time-varying rotating magnetic field and the other one is coupled with a static magnetic field. It is shown that when we consider the spin-spin coupling coefficient in the form of the Calogero-Moser types, the geometric phase can increase with the distance and reach a peak; then it maybe decreases for a short distance and will be unchanged for very long distances. Moreover, increasing the amount of magnetic field causes the decrease of geometric phase in terms of the distance.

Keywords: Geometric phase, qubit, the Calogero-Moser model

217

این مقاله در صورتی دارای اعتبار است که در سایت www.opsi.ir قابل دسترسی باشد.
یوجد می‌آید همچنین

d[\hat{B}_2] = B_2 \, \hat{n} + \hat{B}_1 = B_1 \, \hat{n} + \hat{B}_3

\begin{align*}
H &= I(\sigma_1^x, \sigma_1^y, \sigma_1^z) + B_1 \hat{\sigma}_1^z + B_2(\cos \phi \hat{\sigma}_2^z + \sin \phi \hat{\sigma}_2^y) + D(\sigma_1^x - \sigma_1^y) \\
&= 4\left(\frac{\sigma_1^x + \sigma_1^y}{2} + \frac{\sigma_1^y - \sigma_1^x}{2}\right)
\end{align*}

(1)

در رابطه بالا \(\hat{B}_1 \) انتخاب می‌گردد:

\[
\hat{B}_1 = \hat{D} \, \hat{d} = \hat{D} \, \hat{d}_1 = \hat{D} \, \hat{d}_2
\]

(2)

\[
\hat{D} = \hat{D}_3 = \hat{D}_4 = \hat{D}_5 = \hat{D}_6
\]

(3)

\[
\hat{d} = \hat{d}_1 = \hat{d}_2 = \hat{d}_3
\]

(4)

ویژه مقادیر این هامیلتونی عبارتند از:

\[
E_{1,2} = \pm \frac{1}{2} \sqrt{\left[1 - \frac{2B_1}{2}\right]^2 + \left[B_4^2 + B_4^2 + 4B_4^2\right]}
\]

(5)

\[
E_{3,4} = \frac{1}{2} \sqrt{\left[1 - \frac{2B_1}{2}\right]^2 + \left[B_4^2 + B_4^2 + 4B_4^2\right]}
\]

(6)

۱- مقدمه

در سال ۱۹۷۶ فاز هندسی توسط بریز فرمول نهایی ایجاد شد. این فاز هندسی بر روی دو جرخان متفاوت یافته داد. این فاز هندسی به دو جرخان متفاوت یافته داد. این فاز هندسی به دو جرخان متفاوت یافته داد. این فاز هندسی به دو جرخان متفاوت یافته داد. این فاز هندسی به دو جرخان متفاوت یافته داد. این فاز هندسی به دو جرخان متفاوت یافته داد.
با جایگذاری ویژه حالت‌ها، در رابطه (12) داریم:
\[\gamma_j = 2[M_j^2 + |M_j|^2 + |J_j|^2] \]
(13) \[\frac{1}{|F_j|^2 + |M_j|^2 + |J_j|^2 + 1} \]
(14)

\[\text{می باشد.} \]

2- مدل کالگر - موزر[8] در یک شیب اسپیکی، مکان واقعی اسپیک‌ها به دلیل تولید فوتون‌ها به طور نوسانی تغییر می‌کند. در این حالت انتگرال‌های تبادلی توابع از مکان بوده و به فاصله مشخصی اسپیک‌ها وابسته است. لذا مطالعه تغییرات فازهایی با فاصله در این همبستگی برای روابط، در این قسمت می‌خواهیم حالات کامتدی و کمبودی که دارای اندرکنش تبادلی با هدف تعیین به طور همبستگی موجود در مدل کالگر - موزر، جریان مدل کالگر - موزر به صورت ذیل در نظر می‌گیریم:
\[J(R) = \frac{1}{R^2} \]
(15)

که نمودارهای آن در شکل های (1) و (2) رسم شده است.

\[B_2 = 1, D = 0.5 \]
و مقادیر مختلف \[B_1 \] در مدل کالگر - موزر:
\[\gamma \]

3- فاز بری هامیلتونی سیستم‌های برای پارامتر وابسته به زمان \(R(t) \) که \(R(t) \) ویژه حالت \(M_n \) تغییرات زیر صدق می‌کند:
\[H(R(t)) |n(R(t))\rangle = E_n |n(R(t))\rangle \]
(16) \[H(R(t)) |n(R(t))\rangle = \frac{i}{\hbar} \left(\frac{d}{dt} n(R(t)) \right) \]
(17)

اگر تغییرات به حد کافی کم باشد، طبق قضیه کرکتوس (18) در حالت انرژی، (19) پرداخت می‌شود:
\[n(R(t), t_0 = 0; t) \]
در رابطه با همادیش همادیش همادیش فضایی، همادیش که دارای انرژی آزادت از آن تبعیت می‌کند، مقدار رابطه زیر می‌باشد:
\[n(R(t)) \]
(18) \[n(R(t)) \]
(19)

ضریب اوّل در طرف راست رابطه با برای دیمانگی است. از طرف دیگر با جایگذاری زمان (10) در رابطه (9)، ضریب فازی دوم که متعلق به فاز هندسی بری هست، بدست می‌آید:
\[\gamma'_n(t) = i \left(\frac{d}{dt} n(R(t')) \right) dR(t')/\hbar \]
(11)\[\gamma_n(t) = i \left(\frac{d}{dt} n(R(t')) \right) dR(t')/\hbar \]
(12)

\[\text{در رابطه با مسیر انتگرال مشاهده می‌گردد. در این رابطه رابطه (1) تغییر کرده است.} \]

\[\gamma_j = \int_0^T \frac{d}{dt} \Phi_j(t) dt \]
(12)

\[\text{Calogero-Moser model} \]

* Calogero-Moser model
رفتار کلی این نمودارها به دین صورت است که نخست‌‌میزان فاز‌هندسی با افزایش فاصله یک سیر صعودی را طی می‌کند که پس از رسیدن به یک حدا به‌دنبال یک‌جا کاهش مختصر، ثابت بودن فاز‌هندسی را در فاصله دور شاهد می‌شود. برای مثال در شکل (۱) محدود سی‌بر ثانی و \(B_2 = 1 \) و \(D = 0.5 \) تابع \(\gamma \) رسم شده است. این محدودکننده دارای یک ثابت آرام روبه‌رغم کاهش ثابت‌کننده در این نقطه اول فاز‌هندسی افزایش می‌یابد و در این نقاط نظریه و سبب به‌صورت آرام کاهش بیان‌شده در \(R = 1.37 \) می‌باشد که در این فاصله محدود \(\gamma \) مشاهده شود که در حالی \(\gamma \) به‌صورت فاصله یک فاز‌هندسی ثابت \(R = 1.879 \) موج عناصری یک‌جا با آن هم‌میشته در هردو ملد با افراش میدان. مقدار فاز‌هندسی کاهش می‌یابد.

- نتایج گیری

فاز‌هندسی سیستم دو کوپیت با فاصله بین کوپیت‌ها هنگامی که کوپیت‌ها تحت تاثیر مدل عقلانیستی مختلفی باشند، در مدل \(X \) هایبرید (DM) افزایش درازابرودنی‌سی-موریا (DM) مورد مطالعه قرار گرفت. نشان داد که تاثیر دو مدل کالکرو-مزرع فاز‌هندسی با افراش فاصله یک سیر صعودی را طی می‌کند که پس از رسیدن به یک حدا به‌دنبال یک‌جا کاهش مختصر، ثابت بودن فاز‌هندسی را در فاصله دور شاهد می‌شود. هم‌چنین نشان داد که افراش اندامه میدان باعث کاهش فاز‌هندسی می‌شود.

مراجع

\[\gamma = \frac{1}{\sinh R} \]

در مدل کالکرو-مزرع \(R \) را به‌صورت ذیل در نظر می‌گیریم:

\[J(R) = \frac{1}{\sinh R} \]

که در این مدل نیز فقط نمودارهای \(\gamma \) و \(J(R) \) در بررسی می‌کنم (به شکل‌های (۳) و (۴) دقت شود).