تحليل تولید هارمونیک دوم الکتربولیک مغناطیسی در لایه نازک فیس بیزموت

بیسمویت) با در نظر گرفتن جوزه‌های فرکتالکتریک

اسمه حق وردی، زهرا سادات عزیزی، محمد مهدی طهراهچی

یزهوشگده لیزر و پلاسم، دانشگاه شهید بهشتی، تهران

دانشکده فیزیک، دانشگاه شهید بهشتی، تهران

چکیده - فیلیم‌های نازک بس فرو کاربرد و سیبی در قطعات میکروالکترونیکی دارند. از شدت تولید هارمونیک دوم (SHG) این مواد، به عنوان رویکرد حساس در مطالعه اثر ضعیف مگنتو الکتریک استفاده می‌شود. ضرایب غیرخطی در محاسبه و تخمین به تقارن ساختاری و مشخصه جوزه‌های فرو الکتریک می‌باشد. در این مقاله، ضرایب غیرخطی مغناطیسی تولید شده در این لایه رابطهٔ SHG به تقارن m بررسی شده‌اند. با در نظر گرفتن جوزه‌های فرو الکتریک در این لایه رابطهٔ SHG به تقارن m بررسی شده‌اند.

کلید واژه‌های بیسمویت، تولید هارمونیک الکتریک، تولید هارمونیک دوم، جوزه‌های فرو الکتریک، مگنتو الکتریک.

Magnetic induced harmonic generation in multi-ferric thin film (Bismuth ferrite) by ferroelectric domains consideration

Ensaye Haghverdi¹, Zahra Sadat Azizi¹, Mohammad Mehdi Tehranchi¹,²

¹Laser and Plasma Research Institute, Shahid Beheshti University, Tehran
²Department of physics, Shahid Beheshti University, Tehran

Abstract- The multiferroics thin films are widely used in microelectronic devices. The intensity of the second harmonic generation (SHG) in these films is as a sensitive probe to study the effects of weak magneto electric effects. In this paper, the nonlinear coefficients of magnetic bismuth ferrite (BFO) thin-film with 3m symmetry have been studied. Given ferroelectric domains in this layer, the MSHG relation is provided.

Keywords: Bismuth ferrite, Ferromagnetic domains, Magneto electric, Magnetic induced Second harmonic generation, Second harmonic generation, Transmission geometry.
مقدمه
1- اخیرا، مطالعاتی بر روی کسی‌دهای بس فرو به دلیل تابعیت‌های گوناگونی از جمله مغناطیسی کریستالی قرار گرفته‌اند. از انجایی که لاایه‌های نازک کلیدی ساخت
بز اعمال این قطعات جدید مانند مخازن هستند، اطلاع از
خواص مغناطیسی کنترل آن‌ها ضروری است [1]. از انجایی
که مقادیر کاسی‌دهای قابل اندازه‌گیری در این لاایه‌ها
بی‌پژوهشی است، این تغییر در خواص مغناطیسی کنترل
استفاده می‌شود. منشا این کارایی، حساسیت بی‌پژوهشی
و جفت شدگی مگنتو
الکتریکی به تقریباً یک تولید است.

از روی مقاله بسایری از کسی‌دهای بس فرو
استفاده شده است. از جمله این مواد بسایری
لاایه‌های [100] | SrTiO\(_3\) که لاایه نازک آن در
دماهات مختلف از خواص فرو
الکتریکی و انتی فرو مغناطیسی دارد. در اینجا با نگاه به
اکثر تولید هارمونیک دوم (SHG)
فروالکتریک، لاایه نازک
BFO که به شکل
Magnetic induced second harmonic generation
بررسی می‌شود. از انجایی که
بی‌پژوهشی دارای مرکز
تقرن (کمکی) است به ازا هر توان ورودی، مداخله
در خروجی SHG
نخواهد داشت.

غالباً لاایه‌های فروالکتریک، دارای خواص‌هایی با مساحت
کمتر از روی‌شگر است. بتن‌باین در این مقاله، بعد از
بی‌پژوهشی فروالکتریک، لاایه‌ای است. رویکرد تحلیلی، تاسو
بدارکاری مواد مغناطیسی محاسبه
شد است در نهایت شدتر
توسط SHG
Numerical
مورد نظر، محاسبه و تحلیل شد است.

2- مبنا نظری تولید هماهنگ دوم مغناطیسی
در بلورهای که دارای مغناطیسی خارجی هستند، دارای
بی‌پژوهشی همان یک خطی محیط، در تقاطع دو
قطعی کریستالی، بصورت زیر است [2]

\[P_i (2\omega) = P_i^{**} (2\omega) + P_i^{**} (2\omega) \]

\\(1)\\)

1. Second harmonic generation
2. Magnetic induced second harmonic generation

\[\text{این مقاله به تقریباً یک تولید است.} \]

\[\text{در این مقاله، جهت های مرکز دستگاه مختصات نمونه} \]

\[\text{بر اساس راستای زاویه‌ی خروجی (100) و (010)} \]

\[\text{است انتخاب می‌شود. در یک گره تقرینی (3m) راستای قطعی} \]

\[\text{شکل (1).} \]

\[\text{یک کرت انجایی پژوهش‌سازی به سرعت بازه‌ی (1000) تا (100)} \]

\[\text{بزرگ‌ترین گره تقرینی به 3m سپس نشان داده شد است.} \]

\[\text{شکل (2).} \]

\[\text{در این مقاله، جهت های مرکز دستگاه مختصات نمونه} \]

\[\text{بر اساس راستای زاویه‌ی خروجی (100) و (010)} \]

\[\text{است انتخاب می‌شود. در یک گره تقرینی (3m) راستای قطعی} \]

\[\text{شکل (1).} \]
سری‌های مغناطیسی در سه‌بعدی

در این بخش، با استفاده از مختصات نقطه‌ای شده، سه سه‌بعدی مغناطیسی، در رابطه (1) محاسبه می‌شود. با استفاده از شرط تقارن نیومن:

\[\sigma_{ijkt} = \begin{cases} \sigma_{ij} & \sigma_{t} = \sigma_{k} = \sigma_{r} = \sigma_{l} = \sigma_{pq} = 0 \\ d_{ijkt}^{\text{new}} = -d_{ijkt}^{\text{old}} & \end{cases} \]

که در آن سیگما عنصر ماتریس تقارن و \(d_{ijkt}^{\text{old}} \) به ترتیب عناصری از ماتریس منتهی به سوم قبل و بعد از تبدیل هستند (زیروندها از یک تا سه مقادیر). حین تبدیل غیر صفر تانسور پذیرفته‌ای برابر از:

\[d_{2212} = -d_{1121}, \quad d_{1112} = -d_{2211} \]

\[d_{1112} = -d_{2112} + d_{1121} = -d_{2211} \]

\[d_{2212} = 2d_{2112} - d_{1222} \]

به دلیل پیچیدگی ساختار بلوری، روابط (از جمله تانسور غیرخطی) بر اساس دسته‌بندی مختصات آزمایشگاه نوشته شدند. تا حالا، تانسور پذیرفته‌ای مغناطیسی در سه‌بعدی \(D^{(1)} \) در هر حوزه نسبت به مرعی ناحیه نوشته شده‌بود. برای دسته‌ای از این تانسور در دسته‌بندی آزمایشگاه آزمایشگاه‌ها از ماتریس تبدیل:

\[a = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{3} & \sqrt{2/3} \\ 0 & -\sqrt{2/3} & 1/\sqrt{3} \end{pmatrix} \]

برای حوزه 1 استفاده گذرانه است. این ماتریس، را به \(D^{(3)} \) در حوزه 1 استفاده کنید. این ماتریس را به

\[x_3 \quad \text{زا و راستای x دسته‌ای را به دسته‌ای مختصات منطقه نماید. بنابراین روابط (3) به صورت زیر تبیین می‌شوند:} \]
توجه به روابط (9.10) شدت مناطقی با راستای x قطیحی

\[I_{x}^{2\omega} \propto p_{x}^{2\omega}(p_{x}^{2\omega})^{*} = (\delta A_{y}^{x} J \sin 2\varphi)^{2} + (\delta A_{y}^{x} J \sin 2\varphi + C \cos 2\varphi)^{2} + 2\delta A_{y}^{x} \delta A_{y}^{y} (K \sin 2\varphi) \left(B \sin 2\varphi + C \cos 2\varphi \right). \] (11)

می‌شود، و همین ترتیب برای

\[I_{y}^{2\omega} \propto p_{y}^{2\omega}(p_{y}^{2\omega})^{*} = (\delta A_{y}^{y} J \sin 2\varphi)^{2} + (\delta A_{y}^{y} J \sin 2\varphi + C \cos 2\varphi)^{2} + 2\delta A_{y}^{x} \delta A_{y}^{y} (K \sin 2\varphi) \left(B \sin 2\varphi + C \cos 2\varphi \right). \] (12)

دسته‌بندی شده است. با توجه به شکل (7) در تابعی

قطیحی در راستای متفاوت داریم:

\[p_{x}^{+} = p_{x}(7) + p_{x}(8) = -2m_{d}d_{21} \sin 2\varphi \]
\[p_{x}^{-} = p_{x}(5) + p_{x}(6) = -p_{x}^{+} \]
\[p_{y}^{+} = p_{y}(1) + p_{y}(2) = 2m_{d}d_{21} \sin 2\varphi \]
\[p_{y}^{-} = p_{y}(3) + p_{y}(4) = -p_{y}^{+} \]

\[k = 2m_{d}d_{21} \]

به این ترتیب با نامگذاری، C = 2m_{d}(d_{2221} + d_{1222})LB = 2m_{d}d_{211}.

با رابطه جمع

\[I_{\eta}^{2\omega} = \sum_{\eta} \left| A_{\eta}^{\nu} p_{\eta}^{\nu} e^{i\delta_{\eta}^{\nu}} \right|^{2} \]

که در ان A_{\eta}^{\nu} مساحت حوزه‌ها و \(e^{i\delta_{\eta}^{\nu}} \) به دلیل اختلاف فازی بین حوزه‌ها وارد شده است. قطیحی برای ان

\[p_{x}^{\nu} = A_{x}^{\nu} p_{x}^{\nu} + A_{y}^{\nu} p_{y}^{\nu} + A_{z}^{\nu} p_{z}^{\nu} \]

\[p_{y}^{\nu} = A_{x}^{\nu} p_{x}^{\nu} + A_{y}^{\nu} p_{y}^{\nu} + A_{z}^{\nu} p_{z}^{\nu} \]

\[\delta A_{x}^{\nu} = A_{x}^{\nu} - A_{x}^{\nu} \]

\[\delta A_{y}^{\nu} = A_{y}^{\nu} - A_{y}^{\nu} \]