تحلیل تولید هارمونیک دوم الگای مغناطیسی در لایه نازک بس فروم (فیزیت بیسموت) با در نظر گرفتن جوشهای فروالکتریک

چکیده - فیلم‌های نازک بس فروم کاربرد وسیعی در قطعات میکروالکترونیکی دارند. از شدت تولید هارمونیک دوم (SHG) این مواد، به عنوان روش‌گر حساس در مطالعه اثر ضعیف مگنتو الکتریک استفاده می‌شود. ضرایب غیرخطی در محاسبه و تخمین به تقارن ساختاری و مشخصه جوشهای فرو الکتریک می‌باشند. در این مقاله، ضرایب غیرخطی مغناطیسی لایه نازک بس فروم فیزیک (BFO) با تقارن 3m بررسی شده‌اند. با در نظر گرفتن جوشهای فروالکتریک در این لایه رابطه شدت MSHG با تقارن 3m وارد شده است.

کلید واژه‌های مرتبط: فیلم هارمونیک دوم، الگای مغناطیسی، تولید هارمونیک دوم، جوشهای فرو الکتریک، مگنتو الکتریک.

Abstract- The multiferroics thin films are widely used in microelectronic devices. The intensity of the second harmonic generation (SHG) in these films is as a sensitive probe to study the effects of weak magneto electric effects. In this paper, the nonlinear coefficients of magnetic bismuth ferrite (BFO) thin-film with 3m symmetry have been studied. Given ferroelectric domains in this layer, the MSHG relation is provided.

Keywords: Bismuth ferrite, Ferromagnetic domains, Magneto electric, Magnetic induced Second harmonic generation, Second harmonic generation, Transmission geometry.
1- مقدمه

اختارا، متغیرات سیاسی بر روی اکسیدهای سر فرو به دلیل تابعیت دو گانه آنها از جمله اکسید کریستال صورت می‌گیرد. از آنجایی که لاکتیا نازک کلید اصلی است، بسیاری از قطعات جدید منابع حقولی این اکسید کریستال را بررسی می‌کنند. از خواص مکانیکی، آنها در تاریخ 111 از آنجایی که مقدار کم کریستال به دلیل دقیقه در این لاکتیا نازک می‌گیرد، به سیستم (SHG) کوکچه هستند. از تولید هارمونیک دوم (BFO) عنوان روبوگری حساس به خواص مکانیکی الكریستال استفاده می‌شود. مشنا این کاراپای، حساسیت سیستم بالای در ناحیه نانو بزرگ‌ترین SHG و جفت شدکی مکانیکی الكریستال به نظرهای البورین است.

از روش SHG در مطالعه سیاسی از اکسیدهای سر فرو استفاده شده است. از جمله این مواد، فریت بیسیموت لاکتیا (100) که لاکتیا نازک آن در دمای انقباض خواص فرو الكریستال و انتی فوق‌الماتیسی دارد. در اینجا با نگاه به MSHG، اثر این گروه دوم گونه مکانیکی (BFO) در مرکز تاریخ 111 (BFO) شکل (1) راستای (BFO) مکانیکی و هشته‌های پربینه این (شماره 1 و 8) ملی‌جویانه در کنار این (کمکی) است. به ارایه‌های دارای میان‌دیز سیستم MSHG، در نهایت شده است. تولید شده توسط SHG نخواهد داشت.

غالباً لاکتیا (BFO) در این جهت موثر است. بیش از دو این للمان، به دلیل مکانیکی (BFO) در مرکز و تاریخ 111 بین (BFO) ملی‌جویانه به طرف دیگر انسان در این مقاله، بعد از این شکل (1) راستای (BFO) ملی‌جویانه به این (کمکی) است. به ارایه‌های دارای MSHG نخواهد داشت.

بی‌بسموت، لاکتیا (100) SRTO3 در این مقاله، جهت های مرتفع دستگاه مختصات نمونه بر اساس راستای (BFO) تمیزی خارجی (BFO) هستند. فلش (BFO) این گروه دوم 3m (M2) در این گروه دوم 3m (M2) ملی‌جویانه به این (کمکی) است. به ارایه‌های دارای MSHG نخواهد داشت.

2- بیانی نظری تولید هماهنگ دوم مکانیکی

در این مقاله، جهت های مرتفع دستگاه مختصات نمونه بر اساس راستای زبانی (BFO) اختیار می‌شود. در این گروه دوم 3m (M2) راستای (BFO) ملی‌جویانه به این (کمکی) است.

\[
P_i (2\omega) = P_i^{(m)} (2\omega) + P_i^{(m)} (2\omega)
\]

در این مقاله، جهت های مرتفع دستگاه خاصی باشد، Y = [010] و X = [100] از راستای (BFO) ملی‌جویانه به این (کمکی) است.

\[1 \text{ Second harmonic generation} \]
\[2 \text{ Magnetic induced second harmonic generation} \]
در راستای محور تقانی سه تابه است. در هر جهت قطرش در راستای محور x_3 نشان می‌دهد. سه محور بر آن و صفحه آنها شمش آن، قرار داده‌اند. زیر فرمول عمده بر نمونه و میدان الکتریکی آن در

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$

در نتیجه x_1 به طور نسبت به محور x قرار دارد. نمونه میدان مغناطیسی عرض در راه انتخابی و

$$M_z = 0$$

SHG یعنی سهم مغناطیسی در شدت

در این بخش، با استفاده از معادله (1) محاسبه می‌شود. با استفاده از شرط تقارن نیومن

$$d_{ijkl}^{new} = \sigma | \sigma_{ip} \sigma_{jq} \sigma_{ks} \sigma_{lt} d_{pqrs}^{old}$$

که در آن i, j, k, l عنصر ماتریس تقانی و d_{ijkl}^{old} و d_{ijkl}^{new} به ترتیب عناصر از ماتریس مرتبه سوم قبل و بعد از تبدیل هستند (زیرنویس از یک سایه مقدار می‌گیرد).

ضریب غیر صفر تانسور پذیرفته عبارت از:

$$d_{1212} = -d_{1112}, \quad d_{1211} = -d_{1112}$$

$$d_{1112} = -2d_{1211}(d_{1121}) - d_{1211} = -d_{2212}$$

$$d_{2112} = -d_{2212}(d_{2212}) + d_{1212}$$

به دلیل پیچیدگی ساختار بلوری BFO روابط (از جمله تانسور غیرخطی) بر اساس دسته‌گاه مختصات آزمایشگاه توشه شدند. تا حالا، تانسور پذیرفته مغناطیسی در هر جهت نسبت به مرجع میدان نوشته شده‌اند. $D^{(3)}$ در برای هر جهت قرار دارد عناصر این تانسور در دستگاه مختصات

$$a = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{3} & \sqrt{2/3} \\ 0 & -\sqrt{2/3} & 1/\sqrt{3} \end{pmatrix}$$

$D^{(3)}$ را به برای جهت 1 استفاده شده است. این ماتریس به

$$D^{(3)} = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}$$

را بر راستای z تبدیل می‌نماید. با تبدیل روابط (3) به صورت زیر تبدیل می‌شوند:
در این مطالعه، با در نظر گرفتن حوزه‌های فرو کردن MSHG مختلف، شدت در لایه تقریبی بررسی شد. بررسی میدان مغناطیسی خارجی محاسبه می‌شود. بررسی این نتایج، در مورد حوزه‌های فروکردنی در هر نوار محاسبه می‌شود.

5- نتایج گیری

در این مطالعه، با در نظر گرفتن حوزه‌های حوزه‌ها و استقاط گری برای میدان مغناطیسی مختلف فناوری مغناطیسی توسط MSHG تعمیم می‌شود.

مراجع