تحليل تولید هارمونیک دوم الکتریک مغناطیسی در لایه نازک بس فرو (فیزیک بیسموت) با در نظر گرفتن جوهرهای فرولکتریک

چکیده - فیزیکهای نازک بس فرو کاربرد وسیعی در قطعات میکروالکترنیکی دارند. از شدت تولید هارمونیک دوم (SHG) این مواد، به عنوان روش‌گرحساس در مطالعه اثرات ضعیف مگنتولکتریک استفاده می‌شود. ضرایب غیرخطی در محاسبه و تخمین به تقارن ساختاری و مشخصه جوهرهای فرو الکتریک مجاز در آن، وابسته است. در این مقاله، ضرایب غیرخطی مغناطیسی لایه نازک بس فرو فیزیک بیسموت (BFO) با تقارن ۳пm بررسی شده‌اند. با در نظر گرفتن جوهرهای فروالکتریک در این لایه رابطه‌شده، ارائه شده است.

کلید واژه‌های بیسموت فیزیک، تولید هارمونیک الکتریک مغناطیسی، تولید هارمونیک دوم، جوهرهای فرو الکتریک، مکنتو الکتریک.

Magnetic induced harmonic generation in multi-ferric thin film (Bismuth ferrite) by ferroelectric domains consideration
Ensioy Haghverdi¹, Zahra Sadat Azizi¹, Mohammad Mehdi Tehranchi¹,²
¹Laser and Plasma Research Institute, Shahid Beheshti University, Tehran
²Department of physics, Shahid Beheshti University, Tehran

Abstract- The multiferroic thin films are widely used in microelectronic devices. The intensity of the second harmonic generation (SHG) in these films is as a sensitive probe to study the effects of weak magneto electric effects. In this paper, the nonlinear coefficients of magnetic bismuth ferrite (BFO) thin-film with 3m symmetry have been studied. Given ferroelectric domains in this layer, the MSHG relation is provided.

Keywords: Bismuth ferrite, Ferromagnetic domains, Magnetoelectric, Magnetic induced Second harmonic generation, Second harmonic generation, Transmission geometry.
به‌میانه مولکول‌های بسیاری بر روی اکسیدیهای سر فرو به دلیل تابعیت دو گانه آنها از جمله مگنتو الکتریک صورت می‌گیرد. از این‌رو که لایه‌های نازک پلی‌الیل سخت بسیاری از قطعات جدید مانند حافظه‌ها هستند. امّا از خواص مگنتو الکتریک آن ضرورت است [1]. از این‌رو مگنتو الکتریک که مقادیر کمی‌داری که لایه‌های بسیاری از این‌رو می‌باشد، سیوکه هستند. از تولید هارمونیک دوم (SHG) عنوان شده‌اند. حساسیت بسیار بالای ناظر ناسک تونر الکتریکی SHG و جفت شدگی مگنتو الکتریکی به تلقین‌های بلیورین است.

از روی مطالعه بسیاری از اکسیدیهای سر فرو SHG افتاده شده است. از جمله این موارد فریت بیسموت لایه‌ای نازک از کربنات طبیعی SrTiO₃ ساخته شده است. در آن که مولفه قبض ۳m است. نموده شده است که لایه‌های نازک در دمای انقباض فرو الکتریکی و انواع مغناطیسی داده شده. در اینجا از نگاه به مولفه بازکردن هارمونیک دوم الکتریکی لایه‌ای BFO می‌باشد. مولفه SHG ۳m است. در آن که مولفه قبض ۳m است. در هر توال و چنین دلیل‌می‌باشد که تابعیت مغناطیسی لایه‌ای BFO می‌باشد.

همگنی شده است. در نهایت شدید نمودن BFO معیار محاسبه و تحلیل شده است.

2- سیمایی نظری تولید هم‌اربی دوم مغناطیسی

در پلارهای که دارای مغناطیسی خارجی هستند، دارای هستند. نقطه از قطعی، متوسط مولفه مغناطیسی خارجی هستند. منطقه این که دارای قبض فرو الکتریکی، بصورت زیر است [2]

\[
P_i (2\omega) = P_i^{m} (2\omega) + P_i^{m} (2\omega)
\]

1. Second harmonic generation
2. Magnetic induced second harmonic generation
در راستای محور تقاضا سه تابی است. در هر حوزه چهت قطیعی در راستای محور x3 نمونه و محور x1 عمود بر آن و سطح آن ایجاد می‌شود.
نور فرودی عمود بر نمونه و میدان الکتریکی آن در
صحنه x۳ با زاویه φ نسبت به محور x قرار دارد. نمونه
 تحت میدان مغناطیسی عرض با راهی انتخابی و
است.

\[
\begin{aligned}
M_y &= 0 \\
SHG - ۴\
\end{aligned}
\]

در این مطالعه، با دنیای اینکه جوهر‌های فرو کرک در نظر گرفته می‌شوند، مساحت حوزه‌ها، و انتقال شرایطی به شرایطی متفاوتی مسئله مساحت‌های متفاوتی برای تغییر می‌شوند.

مراجع

\[I_{x}^{2\omega} = p_{x}^{2\omega} \left(p_{x}^{2\omega} \right)^{2} = \left(\Delta \alpha_{x}^{2} (K \sin 2\varphi) \right)^{2} + \left(\Delta \alpha_{y}^{2} (K \sin 2\varphi) \right)^{2} + 2\Delta \alpha_{x}^{2} \Delta \alpha_{y}^{2} (K \sin 2\varphi) \right) \]