انتشار امواج الکترواستاتیک الکترون-یون در نانولوله های کربنی تک جداره

علیرضاعبدی کیان، عاطفه فلاح، زهرا صفی

1. استادیار فیزیک، دانشگاه ملایر
2. دانشجوی کارشناسی ارشد، دانشگاه ملایر

براساس معادلات هیدرودینامیکی کوانتمی یک موج الکترواستاتیکی را از درون یک نانولوله کربنی که با پلاسمای دو مولفه پر شده است در حضور میدان مغناطیسی محوری عبور می کند و به دنبال آن رابطه پاشندگی را بدست می آوریم. در نتیجه به دو شاخه تقسیم می شود (آکوستیکی و اپتیکی) رابطه پاشندگی دو مداصلی برای که متفاوت رسم و مقایسه شدهاند.

کلید واژه ها: امواج الکترواستاتیک، رابطه پاشندگی، کربن نانولوله، معادلات هیدرودینامیکی کوانتمی مغناطیسی

Keywords:
Electrostatic Waves, Dispersion relation, carbon nanotubes, Quantum Magneto-Hydrodynamic Equations

Propagation of Electrostatic Waves of electron– ion in single-walled carbon nanotubes

Alireza Abdikian1, Atefe Fallah2, Zahra Safi2

1.Assistant Professor Physics, University of Malayer
2.Master of Science, University of Malayer

Based on the quantum hydrodynamic equations electrostatic, waves propagate through a carbon nanotube filled by two component plasma in the presence of magnetic field. By driving the dispersion relation, it is shown that those dispersions divided to two branches (acoustic and optical). The dispersion relations are plotted for two principle modes and for different and compared each other.

Keywords:
Electrostatic Waves, Dispersion relation, carbon nanotubes, Quantum Magneto-Hydrodynamic Equations
1- مقدمه

کارهای پژوهشی لانگوئومین زمینه‌ی جدیدی در ۱۹۲۸ به عنوان پلاسمای را به وجود آورد. نام پلاسمای در سال گزارش لانگوئومین برای یک بیای سنتورت‌بردنی تخلیه استفاده شد و در ابتدا تعداد سایر از بونو و الکترون‌ها بود [۱]. پلاسمای گازی شبیه خنثی‌انی از ذرات برادر و خنثی است که از خروج آن در مهندس اجرای پلاسمای حیات در قواعدی است و نیرویی بر هموگلی اوردلاندنی همین نیروییی که برای اینکه به پلاسمای جمعیت منبعی از انواع حرکات ممکن را عرضه کرد. استفاده می‌تواند از فرآیند نسبی در سال ۱۹۹۱ [۲] این ایده از شرکت NEC پلاسمای انجام شده پلاسمو می‌گوند [۳].

2- معادلات پایه

یک نانولوگی کریستال و در طیف نضیم‌های منجری گازی می‌باشد میان یک‌پاسی است و در نظر می‌گیرد. با استفاده از معادلات هیدرودینامیک کوانتومی به صورت می‌گذشته،

\[
\begin{align*}
\frac{\partial \mathbf{n}_j}{\partial t} + \nabla \cdot (n_j \mathbf{v}_j) &= 0 \\
\frac{\partial \mathbf{v}_j}{\partial t} + \left(\mathbf{v}_j \cdot \nabla \right) \mathbf{v}_j + \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \mathbf{P} + \frac{1}{\rho} \nabla \cdot \mathbf{F} \\
\frac{\partial \mathbf{B}}{\partial t} &= 0 \\
\frac{\partial \mathbf{E}_j}{\partial t} + \mathbf{v}_j \cdot \nabla \mathbf{E}_j &= \mathbf{R}_j \cdot \nabla \mathbf{E}_j
\end{align*}
\]

\[a_e = \frac{h^2}{4m^2n_0} \left(\frac{\partial^2}{\partial t^2} + \omega_P^2 \right) (V^2) + \left(\frac{\partial^2}{\partial t^2} + \omega_P^2 \right) \frac{1}{n_0} \frac{\partial^2}{\partial t^2} + \frac{h^2}{4m^2n_0} \frac{\partial^2}{\partial t^2} \nabla^2 (V^2) \]

که در آن به ترتیب \(\omega_P = e^2 n_0 \) (\(M, n_0 \)) و \(\Omega^2_P = e^2 n_0 \) (\(M, n_0 \)) و فرکانس الکترونی پلاسما و فرکانس پیوسته پلاسما است.

\section*{1- معادلات پراکندگی قطعی}

برای حل معادله (12) جواب پتانسیل را به صورت \(\phi = \phi_0 \exp[k(x - \omega t)] \) به دست می‌آید که در نظر می‌گیریم که عدد موج در راستای محور \(z \) و فرکانس را به‌طور می‌باشد. با قرار دادن رابطه بالا در معادله (12) رابطه پاشاندگی کوانتومی را بدست می‌آوریم:

\[(-k^2)\omega^8 + \omega^4 (k^2 [\omega_P^2 + \Omega_P^2] + \omega_P^2) + k^6 (\lambda_P^2 [\omega_P^2 + \Omega_P^2 + \omega_P^2]) + \omega^4 (\lambda_P^2 [\omega_P^2 + \Omega_P^2 + \omega_P^2]) + k^2 (\lambda_P^2 [\omega_P^2 + \Omega_P^2 + \omega_P^2]) + \omega^2 (k^2 [\lambda_P^2] + 2\lambda_P^2) + k^2 [\lambda_P^2]) \]

و عدد موج که ترکبی از عدد موج محوری و عدد موج در راستای عمودی است

\[k^2 = k^2_x + k^2_z \]

\section*{3- نمودارها}

با استفاده از نرم‌افزار ماتماتیکا به رسم رابطه پاشاندگی می‌پردازیم در شکل (1) یک ناحیه انتقال محصول محوری به رسم شده است. مثلاً سیستم به ازای \(k_z \) های کوچک (\(\lambda \) های بلند) به سمت مثبت \(z \) و به صورت خطی و به ازای \(k_z \) های بزرگ (\(\lambda \) های کوچک) به یک مقدار ثابت مجازی می‌ریزد.

\[a_e = \frac{h^2}{4m^2n_0} \left(\frac{\partial^2}{\partial t^2} + \omega_P^2 \right) (V^2) + \left(\frac{\partial^2}{\partial t^2} + \omega_P^2 \right) \frac{1}{n_0} \frac{\partial^2}{\partial t^2} + \frac{h^2}{4m^2n_0} \frac{\partial^2}{\partial t^2} \nabla^2 (V^2) \]

\[\frac{\partial^2}{\partial t^2} + \omega_P^2 + \frac{1}{n_0} \frac{\partial^2}{\partial t^2} \nabla^2 (V^2) = 0 \]

\[\text{حال با استفاده از (8) و (9) برای الکترون داریم:} \]

\[\frac{e}{M} \frac{\partial^2}{\partial t^2} + \Omega^2 (\frac{\partial^2}{\partial z^2} \phi) + \frac{h^2}{4m^2n_0} \frac{\partial^2}{\partial t^2} (V^2) = 0 \]

\[\text{و بطور مشابه برای یون:} \]

\[\frac{e}{M} \frac{\partial^2}{\partial t^2} + \Omega^2 (\frac{\partial^2}{\partial z^2} \phi) + \frac{h^2}{4m^2n_0} \frac{\partial^2}{\partial t^2} (V^2) = 0 \]

\[\text{با استفاده از معادله 4 داریم:} \]

\[a_i = \frac{h^2}{4m^2n_0} \left(\frac{\partial^2}{\partial t^2} + \omega_P^2 \right) (V^2) + \left(\frac{\partial^2}{\partial t^2} + \omega_P^2 \right) \frac{1}{n_0} \frac{\partial^2}{\partial t^2} + \frac{h^2}{4m^2n_0} \frac{\partial^2}{\partial t^2} \nabla^2 (V^2) \]

\[\text{و با استفاده از معادله عمومی (6) و گرفتن دیفرانسی و کرل از مولکولی این دو داریم:} \]

\[\frac{\partial^2}{\partial t^2} + \omega_P^2 + \frac{1}{n_0} \frac{\partial^2}{\partial t^2} \nabla^2 (V^2) = 0 \]

\[\text{و با استفاده از معادله عمومی (6) و گرفتن دیفرانسی و کرل از مولکولی این دو داریم:} \]

\[\frac{\partial^2}{\partial t^2} + \omega_P^2 + \frac{1}{n_0} \frac{\partial^2}{\partial t^2} \nabla^2 (V^2) = 0 \]
نانولوله‌هایی با k کوچک است. و در مد ابتدایی هر چه k بزرگ‌تر باشد قدرمطلق شیب تغییرات کمتر است.

مراجع
[1] آریوی جانجال، مقصده ای بر پایین‌گرایی غیر متناوبی انتشارات علمی دانشگاه آزاد اسلامی اراک 1389
[2] آرشی، مقصده‌ای بر پایین‌گرایی پلاسمای هومووی‌ی کنترا
شده، دانشگاه تبریز، 1381
[3] علی‌حسین‌زاده‌فریبرز، کریم‌نصیری‌راکی، حسین‌دژفرازی
[4] ناصر پیام‌برداران، استاندارد کوچکانه‌ی اثره‌ی بایوژنیکی، مقصده‌ای بر توی شسته‌ی نیم رسانا

\[R = 5R_0 \] نمودا ۲: مداکوستیکی برای نانولوله‌کریمی با شعاع نابت k های متغیر در میدان معطوبیتی ۰.۵ در کند و رفتار غیر خطی دارند.

\[R = 5R_0 \]

\[\omega_p / \omega_p = 0.5 \]

\(k \) های متغیر با k های متغیر به یک مقدار نابت می‌کند. و در شکل (۳) در حد k های برزگ (\(\lambda \) های کوچک) دیک نانولوله با شعاع محدود شده R با \(R = 5R_0 \) شروع به خلق تغییرات مشترک می‌کند. و در حد کوچک‌های کوچک (\(\lambda \) های برزگ) نانولوله با شعاع متغیر با k های متغیر به یک مقدار نابت می‌کند.

نتیجه‌گیری
با استفاده از معادلات هیدرودینامیکی کوانتومی به بررسی انتشار امواج الکترون‌گذاری در یک نانولوله که از پلاسمای بر شده بود برداشته و روابط باشندگی را محاسبه نمودن. با رسم ابن روابط یافتنی که در مدل آکوستیکی برای کهای برزگ تغییرات مد نسبت به k ملاحظه‌ای از