An Investigation of the Modes of Radiation in a Symmetric Container in Equilibrium and the Possibility of Photon Condensation in an Extent Larger than Optical Microcavity

Fatemeh Saeb, Mohammad Eatesami

Physics Department, Yazd University, Yazd, Iran

Abstract- We introduce a photon container with suitable characteristics and boundary conditions for photon ordering and in the linear approximation solve the Helmholtz equation for vector potential in spherical coordinates. The polar and radial dependences of the obtained relations for the eigenmodes advise a likelihood condensation. In addition the successive zeros of the radial component and polar component of the energy current density lead to photon confining in a configuration of photon bundles. For the photons in every bundle conditions comparable with their condition in an optical microcavity are provideable so that their dispersion relation becomes non-relativistic and the photons may attain number conserving thermal equilibrium.

Keywords: Vectorial Helmholtz Equation, Energy Current Density, Stationary and Equilibrium Modes, Photon Condensation, Optical Microcavity
مقدمه

لازم و قواعد BEC در یک دستگاه فوتونی با تعداد گرانیک در انتقال فوتون‌ها با حفظ تعداد می‌باشد. بر اساس رابطه اساسی دینامیک نسبیتی

\[E = \sqrt{\frac{p^2}{2m} + mc^2} \]

که هر یک از جرم‌های انرژی در یک برابر شده، می‌توان با محصور گردید با محصور یک BEC رابطه باشند که آنها را ناسبستی کرده و جرم سکونی را با فوتون‌ها نسبت داد. جیو و بوس [1] این وقوع در داخل کاول ناخن فابری، یک تکه‌ای با انرژی در حالی‌هایی که هر یک با دو بوده و بررسی قرار داده‌اند. در یک سطح پذیرفته‌های معین چنگ [2-3]، به یک برابری گچانش نشان دهنده که فوتون‌ها به گرمی می‌باشند و با سطح حاصل از میکروکاوال ایمنی، در زیر دامی معینی به همان حال جای گیری نشده. می‌تواند در این وقوع معنایی بازیابی نشده است.

همه‌متری که عمیقاً در مورد گچانش فوتون‌ها را بهتری و همکاری [4-5] با تکنیک‌های توانسته‌سازی در میکروکاوال ایمنی بحث و بررسی قرار داده است. در اینجا نشان دهنده که در مختل فوتون‌های که با همین‌ها و مورد توزیع و تحلیل قرار داده شده. در کار آنها، داشته و مورد نظری این وقوع در
مهمتی نخستین مصرف را برای فوتون‌ها ایجاد می‌کند.

فعلی فتو‌بردی‌ها در گستره وسع و در شرایط طبیعی یک شرایط فتوبردی از یکدیگر مستقل است. زیرا که کم‌تر از این وقوع می‌باشد و دو مراحل داشته. در واقع با دسته مد پاپا و ترازند (ال‌ما) خوایه ناشی و می‌توان آنها را جاگاهه مورد بحث و بررسی قرار داد. جواب معلامه هملهمولتز اسکالر را می‌دانستم:

\[\Psi(r, \theta, \phi) = \sum_{q_m} \sum_{n_q} \left(C_q l_q(kr) + D_q n_q(kr) \right) \times \left(M_{qm} P_q^m(\cos \theta) + N_{qm} Q_q^m(\cos \theta) \right) e^{i m \phi} \]

معنی‌یافتنی و فرمول‌بندی

توجه به امکان گچانش فوتون‌ها در گستره یک از طریق توجه به مساحه گچانش در جاسا یک موجود بدنس می‌آید. اما در یک راهبرد میکروکوستی می‌توان با همین‌ها و مورد نظری این وقوع در گچانش فوتون‌ها به خوبی ناشی داده است که عامل اصلی چالش‌های میکروکاوال تعیین می‌کنند. هم‌گاهی بخش‌های قابل ترکیب و هماهنگی سازی

1286
اجتماعیات دهمین سالمندی، دانشگاه شهید بهشتی

23 تا 25 دیماه 1393، دانشگاه شهید بهشتی

محدودیت و زلزله برای q جایگزینی

در مسائل مکانیک

کوانتمی بیای بر از شرایط فیزیکی لازم

کوانتومی بیای برای برقراری شرایط فیزیکی لازم

اصطلاح شود که در این

صورت جواب یا پیش‌بینی، قطعی، توانی و است

واسته و سبب کروی هستند. اگراین روی محو تقارن

مختصات 0 در کار ما چگالش فوتون هماهنگ

است نبایدما ارائه در چنین محدودیت نداریم. در ادامه

نشان می‌دهیم که حتی برای $q=q(l+l')$، فوتون‌ها در

حال واب و ترکیده، در پیکرهایی های منظومه مشابه

آرا به‌ای س از میکروکوکه اکا نظم به خود می‌گیرند. در

اصل رابطه مربوط به توانسته برداری میدان‌های

الکتریکی و مغناطیسی، چگالی گاز از (بردار یوشن-تینگ

S) چگالی الکترودی و مغناطیسی برای 2 و

برخی ناب‌عمومی به شاهد از $lm=2$ یا نشان

می‌دهیم:

\[
V_l(r) = \begin{cases} \frac{n_l(kr) + a \tilde{n}_l(kr)}{j_l(kr)} & \text{for } \theta = \theta_0 \\ \frac{n_l(kr) + a \tilde{n}_l(kr)}{j_l(kr)} & \text{for } \theta = \theta_0 \\ \end{cases}
\]

\[
X_{lm}(\theta) = \begin{cases} Q_l^m(\cos \theta) - \frac{Q_l^m(\cos \theta_0)}{P_l^m(\cos \theta_0)} & \text{for } \theta = \theta_0 \\ Q_l^m(\cos \theta) & \text{for } \theta = \theta_0 \\ \end{cases}
\]

\[
W_l(r) = \frac{d}{dr} \left(V_l(r) \right) = \frac{d}{d \theta} \left(X_{lm}(\theta) \right)
\]

و وجود دو مدل پایا با شاهدهای متعدد و عوامل مختلف

۱.

$T, \theta_0, a, q, \alpha, \gamma$

مانند مثال است. ما را در دامنه اتاق فرض می‌کنیم و تول

موج را طول موج که طبق قانون جابجایی ون برای

تایت جسم سیبی در نظر می‌گیریم. از طرف دیگر شعاع

سطح کروی دوختن آن را $a=\lambda$. و زاویه راس دو بخش

مکانیکی را یافتن شاهد $lm=2, 3$ یکی از جواب‌های

که در آنها:

\[
\frac{dQ_q^m(\cos \theta)}{d \theta} = \frac{dQ_p^m(\cos \theta)}{d \theta} = \frac{dQ_h^m(\cos \theta)}{d \theta} = 0; \quad \theta = \theta_0
\]

انحلاب می‌کنیم. شکل ۱ نشان می‌دهد چگالی الکتریکی و

مغناطیسی به عنوان یک تابعی از بررسی‌های

لوله و کیفیت می‌داشد که در آن‌ها برقرار بودن

شراوردی مرزی و افتراقی شدت میدان‌ها با نهایی شدن به

محور تقارن وابا مرکز مخزن مشاهده می‌شود.

شکل ۲ نشان می‌دهد میدان الکتریکی (راست) و مغناطیسی

(چپ) برای شاهد $lm=2, 3$.

در هر زاویه سمتی، مولفه شعاعی و قطعی S

صرفا در میدان‌های 2 و 3 از

طرف دیگر سیالی هم‌سانتی می‌باشد. صفرفا در میدان‌های

مختلف صفر باشد. صفرفا در میدان‌های به منظور

سطح کروی و صفرفا در میدان‌های به منظور

سطح کروی مکانیکی باعث ایجاد موج ایجاد در این دو

راستا می‌شود که می‌توان از آن، هم ناسیبی شدن

2187
23 تا 25 دیماه ۱۳۹۳، دانشگاه شهید بهشتی

رابطه پاشاندگی فوتون‌ها و نمای همبستگی مانند تعداد آنها در هر سانتی‌متر لوله‌ای شکل را نتیجه‌گیری نمود. مقیاس این لوله‌ها با استفاده فوتون‌های در هر م و در تمام فست‌ها شکل یکسانی به صورت دارد. در نهایت، فوتون‌های لوله‌ای به سمت مرکز محوطه سوق می‌دهند ولی در حالی که تزرانمدور تعداد فوتون‌ها در هر سانتی‌متر لوله‌ای در فست‌ها فقط در راستای است در نتیجه‌گیری ایجاد نزدیکی به محور و مکان محفظه تولید خواهند نمود. نتایج و پیش‌بینی‌ها که به این ترتیب از روابط و نماودارهای ما بدست می‌آید توانایی خاص قابل مشاهده‌ای

شکل ۳: تغییرات مولفه شعاعی و قطری برای پدیده‌های پیچیده در یک لحظه زمانی نشان داده شده است. ستاره‌های متعادل در راستای شعاعی و قطری، پدیده در این شرایط مشاهده نمایند.

۱۳۹۳، دانشگاه شهید بهشتی

مراجع