بررسی مددهای نابش در یک مخزن متناه در حالات ترازمند و امکان چگالش فوتون‌ها

فاطمه صائب، محمد اعتمادی

پژوهشگاه بزرگ‌راه، دانشگاه فیزیک

چکیده - ما یک مخزن فوتونی دارای ویژگی‌ها و شرایط مرزی مناسب برای نظیریابی فوتون‌ها معرفی کرده و در تقریب خطی، معادله هلموولتز را برای یک نسبی برداری آن در دستگاه کروی حل می‌کنیم. با استفاده از قوانین شعاعی و شعاعی‌های قطعی متغیر روابط بدست آمده برای ویژه مدهای احتمالی فضایی آنها را نوید می‌دهند. اضافه بر این، شرایط مولفه‌های شعاعی و قطعی چگالی شار انرژی باعث محصول شدن فوتون‌ها در بستگی فوتونی منظور می‌شود. در هر بسته فوتونی شرایط برای فوتون‌ها قابل مقایسه با شرایط آنها در یک میکروکاواک انبیکی قابل فراهم شدن است به‌دستا می‌آید که رابطه باشندگی ناسیبینی شده و فوتون‌ها می‌تواند با حفظ تعداد به ترازمندی گرما به‌رسند.

کلید واژه‌های مهم: هلموولتز برداری، چگالی شار انرژی، مدل‌های پاپا و ترازمند، چگالش فوتون‌ها، میکروکاواک انبیکی

An Investigation of the Modes of Radiation in a Symmetric Container in Equilibrium and the Possibility of Photon Condensation in an Extent Larger than Optical Microcavity

Fatemeh Saeb, Mohammad Eatesami

Physics Department, Yazd University, Yazd, Iran

Abstract- We introduce a photon container with suitable characteristics and boundary conditions for photon ordering and in the linear approximation solve the Helmholtz equation for vector potential in spherical coordinates. The polar and radial dependences of the obtained relations for the eigenmodes advise a likelihood condensation. In addition the successive zeros of the radial component and polar component of the energy current density lead to photon confining in a configuration of photon bundles. For the photons in every bundle conditions comparable with their condition in an optical microcavity are providable so that their dispersion relation becomes non-relativistic and the photons may attain number conserving thermal equilibrium.

Keywords: Vectorial Helmholtz Equation, Energy Current Density, Stationary and Equilibrium Modes, Photon Condensation, Optical Microcavity

1285

این مقاله در صورتی دارای اعتبار است که در سایت www.opsi.ir قابل دسترسی باشد.
مهربانی،

1. مقدمه

لازم و واقعیت فوتون‌ها با حفظ تعداد ماده، بر اساس رابطه اساسی دينامیک نسبیتی،

\[E = \sqrt{p^2 c^2 + m^2 c^4} \]

در اینجا،

\[c \]

چهارمین چاپ ۱۲۸۶ آمارک اکتیویتیت را که در اینجا به حساب می‌آید، به منظور کسانی که

برای اولین بار به فوتون‌ها نسبت داد/چرب و بوسیک اکتیویتیت را

2. معرفی مخزن فوتون‌های فرومیونی

توجه به اکتیویتیت چاپ ۳۷۴، باشتیرت

از طریق توجه به مشکوکیت چاپ ۳۷۴، موجود. رابطه می‌باشد که در اینجا به حساب می‌آید، به

چاپ ۳۷۴، به دو فرمیونی یا چاپ ۳۷۴، باشتیرت

Downloaded from opsi.ir at 10:53 +0430 on Wednesday August 14th 2019
محدودیت و الزامی برای q وجود ندارد. در مسایل مکانیک کوانتومی برای پرقاری شرایط ذرات کوانتومی لازم است (۱) انتخاب شود که در این صورت جواب های بخش پایه نیروی و نیروی بازبینی لازم می‌شود و برای کیفیت نیروی مخزن θ، در کار ما چگالی فوتوس هماهنگ است بنابراین ما الزامی برای قید مذکور نداریم. در ادامه نشان می‌دهیم که حتی برای $q=q(l+l)\theta$, فوتوس ها در حال یا ترازمند در پیکترنده‌های منظمی مشابه آراهای از میکروکاواکاها نظم به خود می‌گیرند. در ادامه روابط مربوط به تناسان برداری میدان‌های الکتریکی و مغناطیسی, چکالی شار ارزی (بردار یک‌پهلو-نیبگ) S و چکالی الکترومغناطیسی برای $m=2$ و برخی نتایج مربوط به شاخه $lm=2$ را نشان می‌دهیم:

و وجود دو مد $\pm a$ با شاخه‌های متعدد و عوامل مختلف l و λ از طریق فرآیند موجود در این مساله است. ما را در مسایل انتقال می‌کنیم و طول موج را طول موج غلیب بطقی قانون جاجایی و آب در ناحیه سیاه درنر می‌گیریم. آرایه سطوح کروی دو این ایجاد

$\hat{l} \equiv \hat{a} = \hat{\theta} = \frac{d}{d \theta} \hat{r} = \frac{d}{d \theta} \hat{r}
$

شروع فعال و با یا بودن

$\frac{dQ^m_q}{d\theta} = \frac{dQ^m_q}{d\theta} \frac{d}{d\theta} \hat{r} = \frac{dQ^m_q}{d\theta} \frac{d}{d\theta} \hat{r} = \frac{dQ^m_q}{d\theta} \frac{d}{d\theta} \hat{r} = \frac{dQ^m_q}{d\theta} \frac{d}{d\theta} \hat{r}
$

انتحاب می‌کنیم. شکل ۱ نشان‌سیه به‌دست از میدان‌های الکتریکی و مغناطیسی، به عنوان یک نمونه از بررسی‌های لوحی و کیفی ما نشان‌سیه می‌دهد که در آن برقرار بودن شرایط مرزی و افزایش نشان میده‌ها با تبدیل شدن به محوور تقارن وایاً مرکز مخزن مشاهده می‌شود.

شکل ۱: نشان‌سیه به‌دست از میدان الکتریکی (رامت) و مغناطیسی (چپ); برای شاخه $lm=2$، $m=1$.

در هر زاویه سنتی θ, مولفه شعاعی و قطعی S صفر است.

$\sum_{l,m} W_r X \theta \phi = \frac{1}{2\lambda} \frac{\left[\sum_{l,m} \left(\frac{m^2}{\sin^2 \theta} X \theta \phi \right) + \sum_{l,m} \left(\frac{r^2}{\sin^2 \theta} X \theta \phi \right) \right]}{r^2 \sin^2 \theta}
$

$\frac{m^2}{\sin^2 \theta} X \theta \phi + \frac{r^2}{\sin^2 \theta} X \theta \phi
$

$\frac{L^2(l+1)Y^l_1(r^2)}{r^2} \sum_{l,m} W_r X \theta \phi + \frac{m^2}{\sin^2 \theta} X \theta \phi + \frac{r^2}{\sin^2 \theta} X \theta \phi
$

$\frac{1}{2\lambda} \frac{\left[\sum_{l,m} \left(\frac{m^2}{\sin^2 \theta} X \theta \phi \right) + \sum_{l,m} \left(\frac{r^2}{\sin^2 \theta} X \theta \phi \right) \right]}{r^2 \sin^2 \theta}
$

$\frac{L^2(l+1)Y^l_1(r^2)}{r^2} \sum_{l,m} W_r X \theta \phi + \frac{m^2}{\sin^2 \theta} X \theta \phi + \frac{r^2}{\sin^2 \theta} X \theta \phi
$
3- نتیجه‌گیری

نتایج داده کم در مخزن فوتون‌ها و هم نتایب بالینی مانند تعداد آنها در هر سنتیولای شکل را نتیجه‌گیری نمود، مقاطع این لوله‌ها با یکسانی فوتون‌ها در هر و در تمام قسمت‌ها شکل یکسانی به صورت دارد به گونه‌ای که توانست حاصل، فوتون‌ها را به سمت مرکز مخزن سوق می‌دهند ولی در حالات پایا و ترازند تعداد فوتون‌ها در هر سنتیولای شکل این نتایب متعادل و هم‌معنی در سنتیولای شکل می‌باشد. اگر تابیزی از پیوند به درون محیط تابیزی شود فوتون‌ها در هر پیوند به پیوند های نزدیک‌تر به محور و مرکز محیط تابیزی خواهند نمود. نتایج و پیش‌بینی‌هایی که به این ترتیب از روابط و نمودارهای ما بدست می‌آید تمام مراحل گی.

در شکل 2 تغییرات مولفه شعاعی و قطعی بردار پوتون-

شکل 3: نتیجه‌گیری شکل 4: نتیجه‌گیری

cite{Z. Cheng, Phys. Rev. A 80, 033826 (2009).}

[۷] ف. سایب، م. عاطفی‌نامی، د. حاجی‌نیا، د. عابدی‌فرخی، فیزیک ماده ایران، ص ۳۵۰ (۱۳۹۱) و م. عاطفی‌نامی، د. حاجی‌نیا، د. عابدی‌فرخی، فیزیک ماده ایران، ص ۳۵۰ (۱۳۹۱).
