Production of a Particular Superposition of Nonlinear Coherent States and Entangled Nonlinear Coherent States

A. Karimi(1)(2); M. K. Tavassoly(1)(3)

(1) Atomic and Molecular Group, Faculty of Physics, University of Yazd, Yazd
(2) Department of Physics, Islamic Azad University of Abadeh, Fars
(3) Photonic & Research Group, Engineering Research Center, University of Yazd, Yazd

Abstract- In this paper, after a brief review on the nonlinear coherent states and parity operator by using this operator and nonlinear displacement-type operator, we construct new operators which by the action of them on the vacuum state of the field, we generate a superposition of two nonlinear coherent states and two-modes entangled nonlinear coherent states. Also, we show that by the generalization of the presented method in this paper, the superposition of more than two nonlinear coherent states with the vacuum state of the field and n-mode entangled nonlinear coherent states can be generated.

Keywords: Superposition of states, Entanglement, Superposition of nonlinear coherent states, Entangled nonlinear coherent states.

چکیده- در این مقاله، پس از مروری کوتاه بر حالت‌های همودس غیرخطی و عملکر یکایی با استفاده از این عملکر و عملکر جابجایی- گونه غیرخطی، عملکرهای جدیدی تعیین کرد، که با کش آن‌ها روز حالت خلاه میدان، برهم‌نمی‌یابند و از دو حالت همودس غیرخطی و حالت‌های همودس غیرخطی در هم تنبیده دو می‌کنند و به‌طور کامل در این مقاله می‌توان برهم‌نمی‌یابند از دو حالت همودس غیرخطی و خلاه میدان و نیز حالت‌های همودس غیرخطی در هم تنبیده نیز تولید کرد.

کلید واژه‌های نهایی: حالت‌های همودس غیرخطی، عملکرهای همودس غیرخطی، حالت‌های همودس غیرخطی در هم تنبید.
1. مقادیر:

در دهده‌های اخیر با پیشرفت‌های کامپیوتری، دو مفهوم برهمپی و درهمتینی به واسطه نش اساسی که در فرآیند اطلاعات کامپیوتر بر هم بهره‌دارند، توجه بسیاری را به خود جلب کردند. اصل برهمپی به ایجاد تک‌های خلقی از حالت‌های کامپیوتری معنی به حالت‌های جدید با

\[
|\alpha, f\rangle_1 = D_1(\alpha) |0\rangle = N_1 \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |f(n)\rangle
\]

\[
|\alpha, f\rangle_2 = D_2(\alpha) |0\rangle = N_2 \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |f(n)\rangle
\]

(1)

که در آن

\[A^\dagger = f(n) a^\dagger \] و \[A = af(n) \]

که عامل‌های نابودی و افریقی در خصوص و عامل‌های

\[B^\dagger = (l/f(n)) a^\dagger \] و \[B = a(l/f(n)) \]

غیرخطی کمکی هستند. هموگی در روابط بالا،

\[\text{ضایب } N_2 \text{ تابع‌های به‌جاهت هستند و} \]

به شکل زیر تعریف می‌شود:

\[|f(n)\rangle = f(n) f(n-1)... f(0)! \] و \[|f(0)\rangle = 1 \]

(2)

جای‌های هم‌مدتی خطی حاضر، هورزان یا دوگان

\[\Pi = \cos(\pi a^2) \]

(3)

که عامل‌های هرمیتی و کیانی این که روز

\[\text{حال‌های مدلی و فرد بودن} \]

\[\Pi |n\rangle = (-1)^n |n\rangle \]

(4)

\[X = AA^\dagger, B^\dagger B, B^\dagger \]

(5)

در رابطه عامل‌های جی‌به‌جی مقدار

\[XPX = -X \]

(6)

حال با پیش‌بینی تولید برهمپی حالت‌های هم‌مدتی غیرخطی، ابتدا اغلب \(D_j(\alpha) \Pi \)

(7)

\[\text{اندیش‌های} j = 1, 2 \text{ به دو نوع عامل‌های جابجایی} \]

\[\text{غیرخطی اشاره دارد. به راحتی می‌توان تنها داد که} \]

\[[D_j(\alpha) \Pi]_2 = 1, \quad j = 1, 2 \]

(8)

حال با استفاده از عامل‌های پاره‌ای در

\[U_j(\lambda, \alpha, f) = e^{iD_j(\alpha) \Pi} \]

(9)

\[\text{که در آن} \lambda \text{ کمیت حضوی} \]

\[\text{است. با استفاده از روابط} \]

\[\text{و} \]

\[\text{عامل‌های} \]

\[\text{به شکل زیر باین‌لوس کرد:} \]

\[U_j(\lambda, \alpha, f) = \cos(\lambda) l + i \sin(\lambda) D_j(\alpha) \Pi \]

\[\text{با تغییر متغیر} \alpha \]

\[\text{در عامل‌های} \]

\[\text{که عملکرد جابجایی غیرخطی روز} \]

\[\text{آن، عامل‌های} \]

\[\text{شکل زیر تعریف می‌کنیم:} \]

10. تولید برهمپی در حالت هم‌مدتی غیرخطی

\[|\alpha, f\rangle_1 \]

(10)

\[\text{دو نوع حالت هم‌مدتی غیرخطی} \]

\[\text{با تغییر می‌توان در کمک \textbf{جابجایی}} \]

\[D_2(\alpha) = \exp(\alpha \lambda^{\dagger} - \alpha^* B) \]

(11)

\[\text{غیرخطی} \]

\[\text{روی حالت خلا میدان (0), به شکل زیر به‌دست می‌آید:} \]

(12)
در این قسمت از مقاله با استفاده از روشی که در قسمت قبل ارائه و متجری بوده در پرمینه‌های همدوس غیرخطی شد، جمله‌های همدوس غیرخطی درهم تبدیل به تولید دومی می‌گردد.

تئوده دومی

در این قسمت از مقاله با استفاده از روشهای که در قسمت قبل ارائه و متجری بوده در پرمینه‌های همدوس غیرخطی شد، جمله‌های همدوس غیرخطی درهم تبدیل به تولید دومی می‌گردد.

تئوده دومی

در این قسمت از مقاله با استفاده از روشهای که در قسمت قبل ارائه و متجری بوده در پرمینه‌های همدوس غیرخطی شد، جمله‌های همدوس غیرخطی درهم تبدیل به تولید دومی می‌گردد.

تئوده دومی

در این قسمت از مقاله با استفاده از روشهای که در قسمت قبل ارائه و متجری بوده در پرمینه‌های همدوس غیرخطی شد، جمله‌های همدوس غیرخطی درهم تبدیل به تولید دومی می‌گردد.

تئوده دومی

در این قسمت از مقاله با استفاده از روشهای که در قسمت قبل ارائه و متجری بوده در پرمینه‌های همدوس غیرخطی شد، جمله‌های همدوس غیرخطی درهم تبدیل به تولید دومی می‌گردد.
حالتهای همگام غیرخطی درهمبندی چنددمدی زیر حاصل می‌شوند:

\[V_{j,a,b}(\lambda, \alpha, \beta, \ldots, \eta, f) \mid 0 \alpha \mid 0 \beta \cdots \mid 0 \eta \]

\[= \cos(\lambda) \mid \alpha, f \rangle_{j,a} \mid \beta, f \rangle_{j,b} \cdots \mid \eta, f \rangle_{j,z} \]

\[+ e^{i(\alpha \beta')} e^{i(\beta \eta')} \times \sin(\lambda) \mid \gamma, f \rangle_{j,a} \mid \delta, f \rangle_{j,b} \cdots \mid \xi, f \rangle_{j,z} \]

بنابراین، می‌توان با نظر گرفتن مقدار مختلف برای \(\alpha, \beta, \ldots, \gamma, \delta, \xi \) حالتهای همگام غیرخطی درهمبندی چنددمدی متنوعی تولید کرد.

(24)

\[\delta = \alpha \quad \text{و} \quad \gamma = \beta \]

به عنوان مثال، با قراردادن همگام غیرخطی درهمبندی دومدی زیر تولید می‌شود:

\[\Psi_{ENCSS} = \cos(\lambda) \mid \alpha, f \rangle_{j,a} \mid \beta, f \rangle_{j,b} \]

\[+ i \sin(\lambda) \mid \beta, f \rangle_{j,a} \mid \alpha, f \rangle_{j,b} \]

همچنین، با قراردادن همگام غیرخطی درهمبندی دومدی زیر دست می‌یابیم:

\[\Psi_{ENCSS} = \cos(\lambda) \mid \alpha, f \rangle_{j,a} \mid -\alpha, f \rangle_{j,b} \]

\[+ i \sin(\lambda) \mid -\alpha, f \rangle_{j,a} \mid \alpha, f \rangle_{j,b} \]

(20)

5. تولید حالتهای همگام غیرخطی درهمبندی

در این قسمت قصد نسبت پراکندگی از این اثبات‌ها شده‌است:

\[U_{j,a,b} \cdots (\lambda, \alpha, \beta, \ldots, \xi, \eta, f) \]

نقطه چنددمدی

\[U_{j,a,b} \cdots (\lambda, \alpha, \beta, \ldots, \xi, \eta, f) \]

\[= \cos(\lambda) \mid I, 0 \rangle_{j,b} \cdots \mid I, z \]

\[+ i \sin(\lambda) D_{j,a}(\alpha) \Pi_{j,b}(\beta) \Pi_{j,b}(\beta) \cdots \Pi_{j,z}(\eta) \]

(27)

با تبدیل متغیرهای \(\lambda, \eta \) به \(\lambda, \xi - \xi \) و \(\zeta \) به \(\zeta - \zeta \) در عملگرهای جلالی‌گونه و قدرت‌های \(a, b, \ldots, z \) به مدل \(D_{j,a}(\alpha) \Pi_{j,b}(\beta) \Pi_{j,b}(\beta) \cdots \Pi_{j,z}(\eta) \)

ارا \(V_{j,a,b} \cdots (\lambda, \alpha, \beta, \ldots, \xi, \eta, f) \)

به شکل زیر تعیین می‌شود:

\[V_{j,a,b} \cdots (\lambda, \alpha, \beta, \ldots, \xi, \eta, f) \]

\[= D_{j,a}(\alpha) D_{j,b}(\beta) \cdots D_{j,y}(\xi) D_{j,z}(\eta) \]

\[\times U_{j,a,b} \cdots (\lambda, \delta - \delta, \gamma - \gamma, \ldots, \zeta - \zeta, \xi - \xi \eta) \]

\[= \cos(\lambda) D_{j,a}(\alpha) D_{j,b}(\beta) \cdots D_{j,y}(\xi) D_{j,z}(\eta) \]

\[+ i e^{i(\lambda \alpha \beta')} e^{i(\beta \eta')} \times e^{i(\gamma \alpha')} e^{i(\xi \eta')} \sin(\lambda) \]

\[D_{j,a}(\delta) \Pi_{j,b}(\gamma) \Pi_{j,b}(\gamma) \cdots \Pi_{j,z}(\xi) \Pi_{j,z}(\xi) \]

(23)

\[V_{j,a,b} \cdots (\lambda, \alpha, \beta, \ldots, \xi, \eta, f) \]

روی حالتهای درهمبندی متنوعی

\[\mid 0 \alpha \rangle_{j,a} \mid 0 \beta \cdots \mid 0 \eta \rangle_{j,z} \]

616