تولید برهم نهی ویژه‌ای از حالت‌های همودوس غیرخطی و
حالتهای همودوس غیرخطی درهم تنیهده

امیر کریمی(1,2), محمد کاظم توسی(1,3)

چکیده- در این مقاله، پس از مروری کوتاه بر حالت‌های همودوس غیرخطی و عملگر پاریت، با استفاده از این عملگر و عملگر جابجایی- گونه غیرخطی، عملکردهای جدیدی تعیین کرده و با کش آنها روش جدیدی راه‌حلی می‌دهد. همچنین نشان می‌دهم که با تعمیم روش‌های ارائه شده در این مقاله، می‌توان برهم‌نهی بیش از دو حالت همودوس غیرخطی و خلاء میدان و نیز حالت‌های همودوس غیرخطی درهم تنیهده، کناره‌گیری کنند.

کلید واژه‌های اصلی: برهم‌نهی حالت‌ها، در هم تنیهده، برهم‌نهی حالت‌های همودوس غیرخطی، حالت‌های همودوس غیرخطی درهم تنیهده.

Production of a Particular Superposition of Nonlinear Coherent States and Entangled Nonlinear Coherent States

A. Karimi(1,2), M. K. Tavassoly(1,3)

(1) Atomic and Molecular Group, Faculty of Physics, University of Yazd, Yazd
(2) Department of Physics, Islamic Azad University of Abadeh, Fars
(3) Photonic & Research Group, Engineering Research Center, University of Yazd, Yazd

Abstract- In this paper, after a brief review on the nonlinear coherent states and parity operator by using this operator and nonlinear displacement-type operator, we construct new operators which by the action of them on the vacuum state of the field, we generate a superposition of two nonlinear coherent states and two-modes entangled nonlinear coherent states. Also, we show that by the generalization of the presented method in this paper, the superposition of more than two nonlinear coherent states with the vacuum state of the field and n-mode entangled nonlinear coherent states can be generated.

Keywords: Superposition of states, Entanglement, Superposition of nonlinear coherent states, Entangled nonlinear coherent states.
1. مقدمه:

در دهه‌های اخیر با پیشرفت مکانیک کوانتومی، دو مفهوم برهم‌پی و درهم‌پی‌گی به‌واسطه نظریه اساسی GM (آگرا) در فرآیندها اطلاعات کوانتومی بر عهده‌دارند. توجه بسیاری را به خود جلب کردند. اصل برهم‌پی، به اجاه ترکیب‌های مختلف از حالت‌های کوانتومی منجر به حالت‌های جدید با ویژگی‌های غیرکلاسیکی می‌شود. 10 و درهم‌پی‌گی در کدک‌های منجر به توجه بسیاری از پژوهشگران قرار دارد. نشکل‌کننده‌ی در پدیده‌های کاربردی در دانش اطلاعات کوانتومی است.

2. تولید برهم‌پی و در حالت همودوس غیرخطی

|α, f⟩ = D(α)|0⟩ = N1\(\sum_{n=0}^{\infty} \frac{α^n}{\sqrt{n!}} |n⟩\)

|α, f⟩ = D2(α)|0⟩ = N2\(\sum_{n=0}^{\infty} \frac{α^n f(n)}{\sqrt{n!}} |n⟩\)

(1)

که در آن \(A = f(n)\) \(a\) و \(A = af(n)\) به‌ترتیب عملگرهای نابودی و آفتی غیرخطی و عملگرهای \(B^\dagger = \nabla f(n)\) و \(B = a\nabla f(n)\) غیرخطی کمیکی هستند. در روابط بالا،

\[f(n) = f(n) f(n-1) \ldots f(0), \quad f(0) = 1\]

(2)

حالت‌های همودوس غیرخطی حاصل، همزاد با دوگان یکدیگر نامیده می‌شوند.

از سوی دیگر عملگر پارتیک به شکل زیر معرفی شده است:

\[\Pi = \cos(\pi a^2)\]

(3)

که عملگری هرمیتی و یکاتی است و با کنش آن روزی حالت‌های عددهای زوج و فرد به‌ترتیب ویژه‌مقدار 1 + 1

\[\Pi |n⟩ = (-1)^n |n⟩\]

(4)

بدراحی می‌توان از رابطه عملگری زیر صحیح می‌کند:

\[\chi_\pi \chi = -X\]

(5)

حال به‌منظور تولید برهم‌پی در حالت‌های همودوس غیرخطی باید عملگر \(D_j a(\alpha)\Pi\) را با کمکی که انحرافی \(j = 1, 2\) دارد. به راحتی می‌توان طراحی کرد:

\[|D_j(\alpha)\Pi|^2 = 1, \quad j = 1, 2\]

(6)

حال با استفاده از عملگری پارتمز در (۳)، عملگرهای \(U_j(\alpha, \alpha, f)\) را به شکل زیر در نظر می‌گیریم:

\[U_j(\alpha, \alpha, f) = e^{iD_j(\alpha)\Pi}, \quad j = 1, 2\]

(7)

که در آن \(\lambda\) کمیت حیفی و \(f(n)\) است. با استفاده از روابط (۳)، (4) و (5) عملگرهای \(U_j(\alpha, \alpha, f)\) را می‌توان با استفاده از سبک سری نمایی به شکل زیر بازنویسی کرد:

\[U_j(\lambda, \alpha, \beta) = \cos(\lambda) + i \sin(\lambda) D_j(\lambda)\Pi\]

(8)

با تغییر متغیر \(\alpha\) به \(\beta - \alpha\) در عملگرهای \(U_j(\alpha, \alpha, f)\) کنش عملگر جایگاهی گون غیرخطی \(V_j(\alpha, \alpha, \beta, f)\) را به \(D_j(\alpha)\) نشان می‌دهد.
تولید حالت های همروس غير خطی در هم‌وسوئی

در این قسمت از مقاله با استفاده از روشی که در قسمت قبل ارائه و بررسی برهم‌پیوندی حالت‌های همروس غیرخطی در هم‌وسوئی بوده است، با کمک حالت‌های عملکردی \(V_j(\lambda, \alpha, \beta, f) \) به همراه برهم‌پیوندی از دو حالت همروس غیرخطی به شکل زیر استفاده می‌شود:

\[
V_j(\lambda, \alpha, \beta, f) = D_j(\alpha)U_j(\lambda, \beta - \alpha, f)
\]

که در آن از (8) یا (11) یا یکی از قسمت‌های مورد نظر، با کمک حالت‌های عملکردی \(V_j(\lambda, \alpha, \beta, f) \) را به دست می‌آید. اکنون می‌توان با استفاده از روابط (7) و (8) برای هر دو عملکردهایی \(a, b \) میان برهم‌پیوندی \(U_{j,ab}(\lambda, \alpha, \beta, f) \) را به شکل زیر تعیین کرد:

\[
U_{j,ab}(\lambda, \alpha, \beta, f) = \cos(\lambda)D_j(a)D_j(b)\Pi_aD_j(\beta)\Pi_b + ie^{iz(\alpha\beta)}e^{iz(\beta\gamma)}\sin(\lambda)D_j(\alpha)D_j(\beta)\Pi_aD_j(\gamma)\Pi_b
\]
حال حالت‌های همودوس غیرخطی درهمتیه جندمیدی زیر

\[V_{jab}(\alpha, \beta, \ldots, \eta, f) \mid 0\rangle_a \mid 0\rangle_b \cdots \mid 0\rangle_z = \cos(\lambda) |\alpha, f\rangle_{j,a} |\beta, f\rangle_{j,b} \cdots |\eta, f\rangle_{j,z} + e^{i(\alpha^\beta)} e^{i(\beta^\gamma)} + i \sin(\lambda) |\gamma, f\rangle_{j,a} |\delta, f\rangle_{j,b} \cdots |\zeta, f\rangle_{j,z} \] (24)

یکی از معادلات پیش‌تر ارائه شده در نظر گرفته شده است.

حال حالت‌های همودوس غیرخطی درهمتیه جندمیدی نتیجه مثال‌هایی طراحی شده است.

مراجع