Study of the focal properties of Fresnel zone plate’s enhanced model with corrected resolution

Arash Sabatyan , Elnaz Pirziaei

Department of Physics, Faculty of Science, Urmia university, Urmia

Abstract- Due to technical limitations in production of Fresnel zone plate with larger diameter, these parts are not producible. In this article, we introduce a method in which, with fixed focal length produces a zone plate with larger diameter, which leads to modified Fresnel zone plate that its resolution is higher than the previous piece.

Keywords: Gaussian beam, Intensity Distribution, Fresnel zone plate, bright rings, Resolution
1- مقدمه
کانونی کردن و تصویربرداری اشعه ایکس، در حالی که زایدی در عمل فیزیک و زندگی روزمره است، از جمله کاربرد‌های آن می‌توان به اسکیتروسکوپی، نانولیتوگرافی، پزشکی، صمتی و میکروسکوپی با وضوح بالا و ... اشاره کرد. برای رسیدن به این هدف، نیازمندی توسعه‌های بسیاری است. در این ارائه، از مواد جامد استفاده شده است و این مواد در این ناحیه طول موجی تحت هماستی فنگوالکتریک، اثر کامپیوتر و جفت‌شدن باعث جذب بروز می‌شود. بنابراین برای رفع این مشکل، با کامپیوتری عدسی‌های پزشکی که بر بازی اصل پرتو طراحی و ساخته می‌شوند، بیشترند. شده است(1) ترین های مختلفی برای یکی از اصل پرتو طراحی و ساخته می‌شوند، و در حالت به هم ایون هستند، این انتظار دارد که یکی از اصل پرتو طراحی ساخته می‌شود (۱) (۲۰۰۴یک) می‌شود (۱) برای رفع این عناصر، باید منطقه‌ای فرآینده است. این در اختیار از این انتظار دارد که یکی از اصل پرتو طراحی ساخته می‌شود (۱) (۲۰۰۴یک) می‌شود (۱) برای رفع این عناصر، باید منطقه‌ای فرآینده است. این در اختیار

2- نظریه و شیوه‌سازی
پیک یک برابری وسطی مورد تکرار گرفته شده است که در ان پیامدهای فیزیکی و این عناصر، باید منطقه‌ای فرآینده است. این در اختیار

\[U(R) = \alpha \sigma^2 \exp \left(\frac{-c(kR)^2}{2F} \right) \]

این رابطه صرفان اندازه یک پرتگالی است. برای برقراری رابطه بالا، شرط باید برای هر حلقه روشن صدق کند:

\[\beta D_n f_n \exp \left[-\frac{(s_n - s_i)}{\sigma} \right] \left(D_n f_n \right) \leq 1 \]

همچنین رابطه \(1 < e \exp(A^2/\sigma^2) \) جای برای طراحی

\[\sigma = R/2 \]

\[\beta = 0.96 \]

\[\rho = |f_R^2 + R^2 - 2R \rho \cos(\theta - \phi)|^{1/2} \]

\[U_n(R) = \frac{1}{\lambda} \int \int \int \exp(jk\rho) r dr d\theta. \]
تغییر داده و این بار به صورت 0.5 در نظر گرفته می‌شود به این صورت که ضرب صحیحی از پیتای نوارهای روشن FZP آبتدند. پیتای پارکریک نوار که همان ارتفاع نوار ناحیه ا است به علت محدودیت چاب، 400 میکرومتر در نظر گرفته می‌شود.

شکل 1. طراحی از یک نهایی منطقه‌ای قرنفل صحیح پافته

3- کار آزمایشگاهی

شبه سازی کار توسط نرم‌افزار انجام شد. در MATLAB ابتدا نماهایی از FZP به 25 میلی‌متر از فاصله 500 میلی‌متر و 247 نورش کشیده سازی شد. بنابراین تمام نوارهایی روشن به سه ناحیه و تعیین تعداد نوارهای مشخص برای این سه ناحیه، نمودار طراحی شده به صورت زیر حاصل شد. سپس لیتوگرافی با دستگاهی، این نمودارها در آزمایشگاه تحت بیش از ۱۰۰ نانومتر فرآیند و در نهایت توزیع شدت حاصل آنها توسط CCD ثبت شد.

شکل 2. تصویر مرتبط به سه نمودار دیده‌سازی شده. تعداد لیتوگرافی روشن در سه ناحیه، برای این سه نمودار منفود است.

برای هر سه نمودار فاسدلیکانی ۵۰۰ میلی‌متر و قطر ۲۵ میلی‌متر است. تعداد لیتوگرافی روشن نمودار ا برای نواحی ۲ و یک درصد، ۷۵ و نمودار ا برای نواحی ۲۰ و نمودار ا برای سطح‌سازی دارد. برای این نمودارها پیتای نوارهای روشن به صورت ۶۰۰۰ در نظر گرفته شده است. نمودار توزیع شدت عرضی این نمودارها در شکل ۳ رشته که کامل روى منطقه شده است. برای مقایسه، پیتای نوارهای روشن ار فاز FZP

شکل 3. توزیع شدت عرضی در صفحه کانولوشن (میلی‌متر)

شکل 4. نمودار توزیع شدت عرضی مرتبط به و FZP

شکل 5. نمودار توزیع شدت عرضی مرتبط به و FZP

W_a
نمودار توزیع شدت فضایی برای تجزیه شبکه مصرفی در فضای مسطح
نتیجه‌گیری

t(χ) = a1×exp((−((χ−b1)/c1)^2))

مراجع