مقایسه راندمان کوانتومی دیفرانسیلی در لیزر بلور فوتونی تک کاواک با آراهاي از نانوتکاواکهای جفت شده

چکیده - یک نوع لیزر مشکل از آراهاي از نانوتکاواکهای جفت شده بلور فوتونی در نظر گرفته که این لیزر توان آسانه پایين و راندمان کوانتومی دیفرانسیلی بالاتری نسبت به یک لیزر تک کاواک بلور فوتونی دارد. برای بررسی راندمان کوانتومی دیفرانسیلی، معادلات آهنگ لیزر را به دست آورده، سپس در حالت پایا آنها را بررسی نموده و با استفاده از این معادلات، راندمان کوانتومی دیفرانسیلی لیزر تک کاواک با آراهاي از لیزرهای بلور فوتونی مقایسه شده است.

کلید واژه - بره لیزر، راندمان کوانتومی دیفرانسیلی، فاکتور جفت گذاری، نانوتکاواک، میزان آهنگ لیزر

 vej به لیزر راندمان کوانتومی دیفرانسیلی. فاکتور جفت گذاری نانوتکاواک، میزان آهنگ لیزر

Compare differential quantum efficiency in single cavity with coupled photonic crystal nanocavity array laser.

Mozafari¹, Tayebeh, Shojaei², Farideh and Gharati³, Abdoelrasoool

1-MS Student of Physics Department, Payame Noor University, Tehran
2-Faculty of Physics, Shahid Bahonar University of Kerman, Kerman, Iran.
3- Associate Prof. of Physics Department, Payame Noor University, Tehran

Abstract- In this paper, a type of laser which consists of an array of Coupled-Photonic-Crystal-Nanocavities is considered. This laser has a lower threshold power and higher differential quantum efficiency in comparison with a Single-Cavity Photonic Crystal laser. In order to investigate the differential quantum efficiency, first the laser rate equations are calculated. After that, they are evaluated in the steady state. Then, the differential quantum efficiency of Single-Cavity laser is compared with that of Photonic-Crystal laser array.

Keywords: Gain Laser, Differential Quantum Efficiency, Spontaneous Emission-Coupling Factor, Photonic Crystal Laser, Laser Rate Equations
هنگامی که در شیکه دو عضوی ترکیب شوند، باندهای نقص تشکیل می‌دهند که در نواحی براق فتوتیون قرار می‌گیرند.

شکل ۱: تصویر ساختمان (آرایه نانوکاواکه) جفت شده بلور فتوتیون

با ساخت چنین ساختارهایی در یک ماده فعال، می‌توان لیزرهاي با توان‌های خروجی به‌هیجانیت فعالیت در مقایسه با لیزرهاي بلورفتوتیون تک کاواکه و با استاندا قابل مقایسه با لیزرهاي تک کاواکه بلورفتوتیون ساخت. لیزرهاي تک مدل از لیزرهاي آرایه نانوکاواکه جفت شده بلور فتوتیون مشاهده شده است.

۱-۲ لیزرهاي بلور فتوتیون

لیزرهاي بلور فتوتیون از لحاظ تئوري همانند لیزرهاي دیوده مستند و نیروي لیزرهاي بلورفتوتیون اغلب از تئوري لیزر دوید مشتق می‌شود. تغییرات چگالی حامل‌ها در لیزرهاي بلورفتوتیون مشابه با لیزرهاي دیودی می‌باشد:

\[\frac{dN}{dt} = G_{\text{em}} - R_{\text{rec}} \]

که \(G_{\text{em}} \) اهمگی در این دو نشان می‌دهد و \(R_{\text{rec}} \) پنبه‌ای در این دو نشان می‌دهد.

بازتکیب حامل‌ها در واحد حجم در منطقه فعال است. چگالی حامل‌ها با اهمگی پنبه‌ای افزایش پیدا می‌کند. با این ترتیب تاثیشد و بازتکیب غیر ناشی و انتشار برانگیخته کاهش می‌یابد. چگالی فوتون‌ها با انتشار برانگیخته و انتشار خودفتوتیون افزایش می‌یابد و با اهمگی نشان کاهش می‌یابد. معادلات اهمگی چگالی حامل‌ها و چگالی فوتون‌ها با معادلات:

\[\frac{dN}{dt} = \eta \frac{L_{\text{in}}}{h \omega \rho V_{\alpha}} N - \frac{N}{\tau_{\text{rec}}} - \Gamma G(N) P \]

\[\frac{dp}{dt} = \eta G(N) P + \frac{\beta N}{\tau_{\text{rec}}} - \frac{p}{\tau_{\text{p}}} \]

۲- آنالیز تئوري نانوکاواکه بلور فتوتیون

آرایه‌ها در نانوکاواکه مطابق شکل ۱ به‌صورت یک سرهم قرار می‌گیرند. مدهای نقص یک کاواک منفرد
داده می‌شود. که در این معادلات β نیمه عمر ناشی، به صورت $\tau_{m} = \frac{BN}{CN} \times (V_{r} = BN) \text{ و } (V_{r} = V_{r}/d_{s})$ (بان می‌شود. همچنین در این طریق، بهره به صورت ($G(N) = G(e)/n_{ex} \log(N/N_{th})$) در نظر گرفته می‌شود). لازم به ذکر است که تمامی ضرایب در معادلات در جدول 1 مشخص شده‌اند.

2- بررسی معادلات آهنگ در حالت یافتا
در لیزرهاي تانگوکاک بلور فوتونی، استاند نقطة‌ای است که انتشار برانگیخته‌آمری می‌شود و بر انتشار خورشید خلاصه می‌کند. استاند به‌طور دقیق نقطه‌ای است که PV_{mode} درکاو یک وجود دارد. بنابراین $k = 1$ باند، یک فوتون برای تجربه‌ای گرند سایر ریزده‌ها است. انتشار برانگیخته‌ای بیش‌مانده از شروع در معادلات آهنگ در حالت تغییر و فرض اینکه چگالی باید به استاند با مقدارش در استاند هوا یکنی و آهنگ را شکستن آگاهش آهنگ نشان دهنده می‌توان کن تغییر و در استاند را جایی که تغییر فوتون‌ها داخل حجم می‌توانید می‌باشد است. همچنین باید و رادمن کانوتوئی در فیزیکی را به‌دست آورده با این توضیحات توان تغییر و در استاند، بی‌شمار و رادمن کانوتوئی در فیزیکی با معادلات:

$$L_{n,th} = \frac{\hbar \omega}{\eta} \left[\frac{1}{\tau_{p} V_{mode}} - \frac{N_{th}}{\tau_{r}} + \frac{N_{th}}{\tau_{r}} \right]$$

$$\Gamma(N_{th}) = \frac{1}{\tau_{p} - \frac{N_{th} V_{mode}}{\tau_{r}}}$$

$$DQE = \frac{\eta \alpha_{s}}{\alpha_{p}} \frac{V_{mode}}{V_{th}} \frac{1}{\tau_{p} \Gamma(N_{th})}$$

شکل 2: توان خروجی بر حسب توان ورودی برای لیزر نک کاواک بلور فوتونی برای آرایه‌ای از لیزرهاي بلور فوتونی آراها در نظر گرفته شده است. بنا برای

$$V_{mode, array} = 81 \times V_{mode, single}$$

$$V_{a, array} = (9 - 10) \times V_{a, single}$$

داده می‌شود. رادمن کانوتوئی در فیزیکی (DQE) شبیه منحنی توان خروجی - ورودی لیزر بالای استاند است. توان خروجی لیزر با $L_{n,th}$.
شکل ۳: نوار خروجی بر حسب نوار ورودی برای آرایه‌ای از لیزرهای بلوئید فوتونی

با توجه به شکل ۳ برای آرایه‌ای از لیزرهای بلوئید فوتونی مشاهده می‌شود که حاکم‌کننده نوار بمب ورودی تقریباً (2/3) نوار، این نکته توان خروجی منفی و بعد از این نقطه توان خروجی بر حسب نوار ورودی به صورت خطی با شیب بیشتری نسبت به یک لیزر

جدول ۱: پارامترهای استفاده شده در محاسبات

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>10^4 cm/s</td>
</tr>
<tr>
<td>B</td>
<td>1.6×10^{-10} cm3/s</td>
</tr>
<tr>
<td>C</td>
<td>5×10^{-29} cm3/s</td>
</tr>
<tr>
<td>N_p</td>
<td>1.5×10^8 cm$^{-3}$</td>
</tr>
<tr>
<td>G_v</td>
<td>1500 cm$^{-1}$</td>
</tr>
<tr>
<td>η</td>
<td>0.26</td>
</tr>
<tr>
<td>Γ</td>
<td>0.159</td>
</tr>
<tr>
<td>d_a</td>
<td>2×10^{-5} cm</td>
</tr>
<tr>
<td>V_g</td>
<td>2.2×10^{-13} cm2</td>
</tr>
<tr>
<td>V_{mode}</td>
<td>6×10^{-14} cm3</td>
</tr>
<tr>
<td>λ_e</td>
<td>1.53×10^{-4} cm</td>
</tr>
<tr>
<td>λ_p</td>
<td>0.83×10^{-4} cm</td>
</tr>
</tbody>
</table>

یافته‌ها در آزمایش‌های این پروژه نشون دادند که با تغییرات در شرایط ورودی، توان خروجی نوار بمب همچنین نیز به شیب بیشتری نسبت به یک لیزر نوار ورودی به شکل ۳ برای آرایه‌ای از لیزرهای بلوئید فوتونی مشاهده می‌شود که حاکم‌کننده نوار بمب ورودی تقریباً (2/3) نوار، این نکته توان خروجی منفی و بعد از این نقطه توان خروجی بر حسب نوار ورودی به صورت خطی با شیب بیشتری نسبت به یک لیزر

مراجع