مقایسه راندمان کوانتومی دیفرانسیلی در لیزر بلور فوتونی تک کاواک با آرابهای از نانوکاواک‌های جفت‌شده

چکیده - یک نوع لیزر مشکل از آرابهای از نانوکاواک‌های جفت شده بلور فوتونی در نظر گرفته که این لیزر توان آسانی یابی و راندمان کوانتومی دیفرانسیلی بالاتری نسبت به یک لیزر تک کاواک بلور فوتونی دارد. برای بررسی راندمان کوانتومی دیفرانسیلی، معادلات آهنگ لیزر را به دست آورده، سپس در حالت پایا آنها را وسیع نموده و با استفاده از این معادلات، راندمان کوانتومی دیفرانسیلی لیزر تک کاواک با آرابهای از بلور فوتونی مقایسه شده است.

کلید واژه - لیزر، راندمان کوانتومی دیفرانسیلی، فاکتور جفت‌شده، خودوپیوندی، بلور بلور فوتونی، معادلات آهنگ لیزر

Compare differential quantum efficiency in single cavity with coupled photonic crystal nanocavity array laser.

Mozafari1, Tayebeh, Shojaei2, Farideh and Gharraat3, Abdolrasool
1-MS Student of Physics Department, Payame Noor University, Tehran
2-Faculty of Physics, Shahid Bahonar University of Kerman, Kerman, Iran.
3- Associate Prof. of Physics Department, Payame Noor University, Tehran

Abstract- In this paper, a type of laser which consists of an array of Coupled-Photonic-Crystal-Nanocavities is considered. This laser has a lower threshold power and higher differential quantum efficiency in comparison with a Single-Cavity Photonic Crystal laser. In order to investigate the differential quantum efficiency, first the laser rate equations are calculated. After that, they are evaluated in the steady state. Then, the differential quantum efficiency of Single-Cavity laser is compared with that of Photonic-Crystal laser array.

Keywords: Gain Laser, Differential Quantum Efficiency, Spontaneous Emission-Coupling Factor, Photonic Crystal Laser, Laser Rate Equations

449

این مقاله در صورتی دارای اعتبار است که در سایت www.opsi.ir قابل دسترسی باشد.
مدتی که در شیکه دوبعدی ترکیب شوند، ایندیهای نقش تشکیل می‌دهند که در نوار گاف فوتونی قرار می‌گیرند.

شکل ۱: تصویر ساختار آرابه نانوتاکواکس جفت شده بلور فوتونی ساخته شده در سیلیکون۲.[۱۷]

۱- مقدمه
نانوتاکواکس‌های بلور فوتونی به دلیل نسبت ضریب کیفیت بالا و حجم مکیف کاواک خیلی برتر مطالعه قرار گرفتند. برای اولین بار توسط پرسر پیش بینی شده که اهگه انتشار خودیوده با قرار گرفتن در محیط الکترومغناطیسی تغییر خواهد کرد. نانوتاکواکس‌های بلور فوتونی اهگه انتشار خودیوده را افزایش می‌دهند که در نتیجه چگالی حالت الکترومغناطیسی (DOS) نسبت به فاز آزاد افزایش می‌یابد. که به این ترتیب، گفته می‌شود (۱۰). افزایش در چگالی حالت نوری مقدار لزیجی باعث افزایش انتشار خودیوده می‌شود در نتیجه کسر بیشتری از فوتونها در مقدار لزیجی متشکل شده و این اشاره به ضریب جفت‌سازی انتشار خودیوده β درد و باعث کاهش آسانه لزیجی می‌گردد. همچنین اثر پرسر سرعت کمک‌سازی مستقیم را افزایش می‌دهد. توان خروجی لزیجی نانوتاکواکس بلور فوتونی به‌نتیجه پایین است (چند نانومتر) که این حداً زیر توان مورد نیاز برای بسیاری از کاربردها می‌باشد. برای افزایش توان لزیجی بلور فوتونی، لزیجی باند به پیشنهاد داده شده که این توان لزیجی نیز لزیجی چند میدان دارد. برای غلبه بر این مشکلات آرامی از لزیجی نانوتاکواکس جفت‌شده بلور فوتویی به دلیل پیشنهاد داده شدند. سرعت گروه آرایه-های جفت شده بلور فوتونی زیر ۷۸۰ نوردست، به دیدن نتیجه می‌توان از این ساختارها در برنامه‌های کاربردی از شهرت رسانی و سنسور استفاده کرد (۲۳). در این مقاله مدل دیلی اهمیت کمیت ریشه‌داره کوتونومی دیفرانسیلی (DQE) مورد بحث قرار گرفته و این با توجه به این نظریه (۱۲) تک کاواک و آرایه‌های جفت شده محاسبه شده است.

۲- آنالیز نتوری نانوتاکواکس‌های بلور فوتونی
آرایه‌ها در نانوتاکواکس مطلق شکل (۱) به‌صورت یک سر در دو مورد قرار می‌گیرند. مدهای نقش یک کاواک منفرد
در این معادلات، β نیمه عمر تابشی به صورت $\beta_{nr} = \frac{BN}{CN}$، $\beta_{pr} = \frac{V_r}{d_n}$ و $\beta_{1p} = \frac{1}{\eta_{tr} V_{a}}$ مجموعه از این اعداد، بهره به صورت $(V_{r})_2 = CN^2$ در نظر گرفته می‌شود. لازم به ذکر است که تمامی ضرایب در معادلات
در جدول 1 مشخص شده‌اند.

جدول 1

<table>
<thead>
<tr>
<th>نام تابشی</th>
<th>ضریب</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>$eta_{nr}$</td>
<td>$\frac{BN}{CN}$</td>
<td></td>
</tr>
<tr>
<td>$eta_{pr}$</td>
<td>$\frac{V_r}{d_n}$</td>
<td></td>
</tr>
<tr>
<td>$eta_{1p}$</td>
<td>$\frac{1}{\eta_{tr} V_{a}}$</td>
<td></td>
</tr>
</tbody>
</table>

بررسی معادلات آهنگ در حالت گروه
در لیزرهای نانوکوارکیک بلور فوتونیک، اکتشاف نغات‌های است که انتشار پرتاب‌پذیری افزایش می‌شود و بر انتشار خودیکنی پیش گرفته می‌شود. اکتشاف نغات‌هایی است که یک PV_{mode} دارند. تا زمانی که $1 = 1$ باشد، یک فوتون برای تحرکی کردن سایر رویدادهای انتشار پرتاب‌پذیری بایستی می‌ماند.

با شرایط معادلات آهنگ در حالت تغییر، برخی از این مقاله‌ها و علوم آنها یکی یا دو توان ورودی در استانه را جایی که تعداد فوتون‌ها داخل حجم می‌توان با مقدار کم‌تری انتشار پرتاب‌پذیری افزایش بدهد.

اجتماع برهه و رامدن کانوتومی دیفرانسیل را به‌دست آورده با این توضیحات توان ورودی در استانه، بهره و رامدن کانوتومی دیفرانسیل با معادلات:

$$L_{in,ah} = \frac{\hbar\omega_{V_a}}{\eta} \left[\frac{1}{\tau_p V_{mode}} - \frac{N_{ah} V_{mode}}{\tau_r} + \frac{N_{ah}}{\tau_r} \right]$$

$$\Gamma G(N_{ah}) = \frac{1}{\tau_p} - \frac{N_{ah} V_{mode}}{\tau_r}$$

$$DQE = \eta \left[\frac{V_{mode}}{V_a} \frac{1}{\tau_p} \Gamma G(N_{ah}) \right]$$

در این معادلات، η نیمه عمر تابشی به صورت $\eta_{nr} = \frac{BN}{CN}$، $\eta_{pr} = \frac{V_r}{d_n}$ و $\eta_{1p} = \frac{1}{\eta_{tr} V_{a}}$ مجموعه از این اعداد، بهره به صورت $(V_{r})_2 = CN^2$ در نظر گرفته می‌شود. لازم به ذکر است که تمامی ضرایب در معادلات
در جدول 1 مشخص شده‌اند.

شکل 2: نیمه عمر تابشی بر حسب توان ورودی برای لیزر نانوکوارکیک بلور فوتونیک
برای آرایه‌های از لیزرهای بلور فوتونیک آراهی 959 در نظر گرفته شده است. بنابراین
$V_{mode, array} = 81 V_{mode, sin gle}$
$V_{a, array} = (9-10) V_{a, sin gle}$
تنکاواک افزایش بیدا می کند، همچنین شیب این منحنی تقریباً ۳/۱۰ می باشد که نسبت به لیزر تنکاواک ده برابر بیشتر می باشد.

۳- ترتیب گیری

شیب منحنی توان خروجی بر حسب توان ورودی بیانگر کمیت رادنمان کوالیتی دیفرانسیلی بوده که برآی آرایه ای از لیزرهای بلور فوتونی بیشتر از لیزر تنکاواک می باشد.

دی دایل برای علت بهبود رادنمان کوالیتی دیفرانسیلی لیزرها آرایه تنکاواک جفت شده بلور فوتونی می توان بیان نمود. با ترکیب E مقدار Vθ پایه و نوارین DQE آینه آرایه بناب و افزایش Vθ پایه و دما. دانسته شده در تعداد تنکاواک یک بلور فوتونی با افزایش در تعداد کمک‌ها حجم ماده پمپ شده α از این نسبت Vθ افت‌افراش می‌باید. از این نسبت Vθ/α یکی از این افزایش تنکاواک نسبت به لیزر تنکاواک لیزرها. در این نسبت در منطقه بیشتر فضاهای تنکاواک افتاده.

مراجع

جدول ۱: پارامترهای استفاده شده در محاسبات

<table>
<thead>
<tr>
<th>ضریب بزرگ‌ترین بیپومولکولی</th>
<th>B = 1.6 × 10⁻⁶ cm³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب بزرگ‌ترین یافته نانوسی</td>
<td>C = 5 × 10⁻⁹ cm³/s</td>
</tr>
<tr>
<td>ضریب بزرگ‌ترین دامن‌هاهای عبوری</td>
<td>N₀ = 1.5 × 10⁸ cm⁻¹</td>
</tr>
<tr>
<td>ضریب بزرگ‌ترین دامن‌هاهای غیربزرگ‌ترین</td>
<td>G₀ = 1500 cm⁻¹</td>
</tr>
<tr>
<td>ضریب بزرگ‌ترین دامن‌هاهای غیربزرگ‌ترین</td>
<td>η = 0.26</td>
</tr>
<tr>
<td>ضریب بزرگ‌ترین دامن‌هاهای غیربزرگ‌ترین</td>
<td>Γ = 0.159</td>
</tr>
<tr>
<td>ضریب بزرگ‌ترین دامن‌هاهای غیربزرگ‌ترین</td>
<td>d₂ = 2 × 10⁻⁵ cm</td>
</tr>
<tr>
<td>ضریب بزرگ‌ترین دامن‌هاهای غیربزرگ‌ترین</td>
<td>V₀ = 2.2 × 10⁻¹⁸ cm³</td>
</tr>
<tr>
<td>ضریب بزرگ‌ترین دامن‌هاهای غیربزرگ‌ترین</td>
<td>V₀ = 6 × 10⁻¹⁴ cm³</td>
</tr>
<tr>
<td>ضریب بزرگ‌ترین دامن‌هاهای غیربزرگ‌ترین</td>
<td>λ₀ = 1.53 × 10⁻⁴ cm</td>
</tr>
<tr>
<td>ضریب بزرگ‌ترین دامن‌هاهای غیربزرگ‌ترین</td>
<td>λ₀ = 0.83 × 10⁻⁴ cm</td>
</tr>
</tbody>
</table>

شکل ۳، توان خروجی بر حسب توان ورودی برای آرایه‌ای یک بلور فوتونی

با توجه به شکل ۳، برای آرایه‌ای یک بلور فوتونی مشاهده می‌شود که حداکثر توان بین ورودی تقریباً ۲۰/۵۴ mw (می‌باشد تا قابل این نقطه توان خروجی منفی و بعد از این نقطه توان خروجی بر حسب توان ورودی به صورت خطی با شیب بیشتری نسبت به یک لیزر

database: 1393.255