طراحی پالایه شکاف با یک باند بازتاب به روش لیه‌های مجزا در گستره دیدگانی

محمدمهدی حمزه‌نژاد، مرتضی حاجی محمودزاده، حمیدرضا فلاح و حسین زابلیان

گروه فیزیک، دانشگاه اصفهان، اصفهان

گروه پژوهشی اپتیک کوانتومی، دانشگاه اصفهان، اصفهان

چکیده- در این مقاله، طراحی ساختاری به وسیله روش کلاسیک لیه‌های مجزا انجام شده است. ساختار کلاسیک با تکرار تناوبی دولایه با ضرایب شکست بالا و پایین ایجاد می‌شود. به منظور کاهش پهنای شکاف پالایه در ساختار بجای استفاده از دو ماده متفاوت از یک ماده با دو چگالی دنده کنکور دهم کننده استفاده شده است. در نهایت، افت و خیزه‌های بالا عبور با استفاده از پیشنهاد سازی بیرونی-تونر لایه‌ها و اضافه نمودن کننده یک تونر کننده کاهش می‌یابد. این لایه، روی اوینی لایه پس از محیط فرود قرار گرفته است.

کلید واژه- پالایه شکاف، تمام تکرار، چگالی درهم کنکور دهه‌کننده، لیه‌های مجزا، موج‌دار

Design of notch filter with a reflection-band by discrete layers method in visible region

M. M. Hamzenejad, M. Haji Mahmooodzadeh, H. R. Fallah and H. Zabolian

Department of physics, University of Isfahan, Isfahan

Quantum optics research group, University of Isfahan, Isfahan

Abstract- In this paper, the design of structures was done by using of classical discrete layers method. Classical structure was made by periods of two layers with high and low refractive index. In order to decreasing notch width of filter, one material with two different packing density was used in structure instead of two different materials. Finally, sidelobes of transmittance band were decreased by optimization of outer most layers and inserting a match layer. This layer is placed on the first layer after incident medium.

Keywords: Notch filter, Holography, Packing density, Discrete-layers, Rugate
1- مقدمه
پالایه‌های شکاف به اجزای اپتیکی گونه‌ای که یک گسترده محدود طول موجی را پرتاب کرده و توانایی اطراف باند پرتاب را بهسیون می‌دهند، این پالایه‌ها به دلیل بهبود عملکرد سامانه‌های نوری، قدرت دارند در زمینه‌های مختلف اپن‌کننده‌ها و سایر مؤلفه‌های نوری (انهای، سالنها) استفاده شوند. این نوع از پالایه‌ها دارای گزینه‌هایی هستند که از لحاظ حفاظتی از قطعات نوری در برابر برتوختن مانند ویژه‌ای استفاده می‌شوند. از این دیدگاه، پالایه‌های شکاف معمولاً به سه روش کلاسیکی (پالایه‌ای نازک، نازکردن و نازکردن) مانند طیف‌سنجی را و از این رو به‌طور دقیق اندازه‌گیری می‌شود.

پالایه‌های شکاف در این پژوهش با روش کلاسیکی (اپن‌کننده) استفاده می‌شود. در این روش، مسیر نوری به دلیل تغییرات سنگین در حالت نوری به دلیل تغییرات در حالت نوری استفاده می‌شود. در این روش، مسیر نوری به دلیل تغییرات سنگین در حالت نوری استفاده می‌شود.

2- نظریه پالایه شکاف
با توجه به شکل طیف این نوع از پالایه‌های تداخلی، اصطلاح «پالایه شکاف» به آنها اطلاق می‌شود. با استفاده از یک میزان ایران طیف این پالایه‌ها به دلیل انتقال نور از طول موج‌ها و سنگین به دلیل پرتو‌کشی باشند. همچنین در گسترده‌ای از پالایه‌ها پالایه‌ها و دارای اهمیت است. میزان بهبود پرتاب در باند پرتاب

\[NW = \frac{4}{\pi} \sin^{-1}\left(\frac{n_H - n_L}{n_H + n_L}\right) \]

مورد دیدگی که در بحث پالایه‌های شکاف مطرح می‌شود و دارای اهمیت است. میزان بهبود پرتاب در باند پرتاب

\[^{1} \text{Notch Filters} \]
\[^{2} \text{Discrete layers} \]
\[^{3} \text{Rugate} \]
\[^{4} \text{Holography} \]
جدول 1: مقادیر محاسبه شده توسط روابط (1) و (2) و طریقی شده برای ساختار مختلف SiO_2.

<table>
<thead>
<tr>
<th>ساختار</th>
<th>SiO_2</th>
<th>γ_0, γ_1</th>
<th>γ_2, γ_3</th>
<th>پیشینه بیابن</th>
<th>محاسبه شده</th>
<th>پیشینه بیابن</th>
<th>محاسبه شده</th>
<th>طریقی شده</th>
<th>پیشینه بیابن</th>
<th>محاسبه شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>ساختار 1</td>
<td>γ_0, γ_1</td>
<td>γ_2, γ_3</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
<td>طریقی شده</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
<td>پیشینه بیابن</td>
</tr>
<tr>
<td>γ_0</td>
<td>γ_1</td>
<td>γ_2, γ_3</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
<td>طریقی شده</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
<td>پیشینه بیابن</td>
</tr>
<tr>
<td>γ_1</td>
<td>γ_2, γ_3</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
<td>طریقی شده</td>
<td>پیشینه بیابن</td>
<td>محاسبه شده</td>
</tr>
</tbody>
</table>

است که می‌توان آن را با استفاده از رابطه زیر محاسبه کرده 7:

$$R_{\text{max}} = \left(\frac{1}{n_{\text{sub}}} \right) \left(1 - \frac{n_{\text{sub}}^2}{n_{\text{sub}}^2} \right)$$

3- انتخاب مواد

با توجه به مطالعه بالایی برخوردار است. همچنین چون ساختار از اهمیت بالایی برخوردار است، همچنین چون ساختار همان‌کننده بالایی در اینجا در ساختار مورد مطالعه قرار گرفته است، به‌طور کلی برخوردار باشد. معمولا اخلاق ضریب شکست مواد در دسترس بیشتری بالا می‌باشد. در تنها راه‌های بیابن بیابن (پیشینه شکست) نسبت به طول موج مکری بیابن بیابن از اندازه بالایی برخوردار باشد. در اینجا ابتدا ماده یکم در اکسیدی $\text{(Y}_2\text{O}_3\gamma_0)$ و ماده دوم در اکسیدی $\text{(SiO}_2\gamma_1)$ با به عنوان ضریب شکست پایین انتخاب نموده و با استفاده از روابط (1) و (2) مقدار پیشینه شکست و بیابن بیابن برای طول موج مرکزی 520 نانومتر محاسبه گردیده و مقدار بیابن بیابن بر حسب توصیف درصدی از طول موج بیابن بدست آمده است. با محاسبه مقادیر، مشاهده می‌شود میزان پیشینه بیابن حدود 13 درصد از طول موج مرکزی را شامل می‌شود. این مقادیر برای

1 Packing Density
مقدار بهترین شکاف و بیشینه بازتاب برای ترتیب متناوب با ابزار ضریب شکاف دوایه و تعادل جفت نیاز استفاده شده در این بخش تغییر می کند. همچنین می‌توان با قرار دادن یک‌جفت کننده در انتهای سایر و با یپشنهال در نظر گرفته شود که مرتبه بازتاب بیشتر است و از هماهنگ‌هایی که در انتهای سایر و با یپشنهال شکست در گستره بازتاب بالا نیز می‌شود که این مقدار با افزایش تعادل نیاز است.

5- نتایج گیری

همان‌گونه که در شکل 2 مشاهده می‌شود، این صورت‌گیری می‌تواند با قرار دادن یک چسب‌کننده در انتهای سایر و با یپشنهال شکست در گستره بازتاب بالا نیز می‌شود که این مقدار با افزایش تعادل نیاز است.