مدرساتی اثر ناخالصی نوع P بر نویز شدت نسبی در لیزرهای نقطه کوانتومی

مریم سنابی1،2، عباس ظریفکار1، محمدحسین شیخی1،و حمید نادرگان2
1 دانشکده مهندسی برق و کامپیوتر، دانشگاه شیراز، شیراز
2 پژوهشگاه نانوفناوری دانشگاه شیراز، شیراز
3 دانشکده فیزیک، پردیس علوم دانشگاه شیراز، شیراز

چکیده- در این مقاله به مدرساتی اثر ناخالصی نوع P بر مشخصه نویز شدت نسبی در لیزرهای نقطه کوانتومی در طول موج 1.3 میکرومتر پرداخته شده است. معادلات نرخ الکترونها و حفاظه‌ها در سه ترکیب گسترش در نقاط کوانتومی به همراه دو ترکیب پیوسته در چهار کوانتومی و ناحیه سد تکانیال به همراه معادله نرخ فوتونها در زمین سیگنال کوچک حول نقطه کار به قرم خطی درآورده شده و سپس میاناب نویز لجیس اضافه گردیده است. محاسبات نشان می‌دهد که ناخالصی نوع P باعث کاهش میزان نویز شدت نسبی در لیزرهای نقطه کوانتومی می‌گردد. با افزایش جریان و بار، نویز نقطه کوانتومی در آلاینده شده افراشی را همچنین از میزان نویز شدت نسبی کاسته می‌شود. این نتایج در اثر افزایش جریان و مقدار نویز محسوب شده با تابع تجربی گزارش شده همکتی دارد.

کلید واژه- لیزر نقطه کوانتومی، ناخالصی نوع P، گیم غیرخطی، منابع لجیس، نویز شدت نسبی.

Theoretical Modeling of p-doping Effect on Relative Intensity Noise in 1.3µm InAs/GaAs Quantum Dot Lasers

Maryam Sanaee1,2, Abbas Zarifkar1, Mohammad Hossein Sheikhi1,2 and Hamid Nadgaran3

1 School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
2 Nanotechnology Research Institute, Shiraz University, Shiraz, Iran
3 School of Physics, Science Campus, Shiraz University, Shiraz, Iran

Abstract- In this paper we investigate theoretically the effect of p-doping on the relative intensity noise characteristics of 1.3µm InAs/GaAs quantum dot lasers. The rate equations for electrons and holes in three QDs’ discrete levels, wetting and barrier states besides the rate of photons have been linearized in small signal regime around the operating point. Calculations demonstrate that p-doping would decrease the relative intensity noise of the quantum dot lasers. By increasing the injection current, the output power rises and the noise intensity reduces in p-doped QD laser which is in agreement with reported experimental results.

Keywords: Quantum dot lasers, P-doping, Nonlinear gain, Langevin sources, Relative intensity noise.
Theoretical Modeling of p-doping Effect on Relative Intensity Noise in 1.3µm InAs/GaAs Quantum Dot Lasers

M. Sanaee, A. Zarifkar, M. H. Sheikhi, and H. Nadgaran

sanaee@shirazu.ac.ir, zarifkar@shirazu.ac.ir, msheikhi@shirazu.ac.ir, nadgaran@susc.ac.ir

1 Introduction

In recent decade, semiconductor quantum dot (QD) lasers have been widely attracted to realize enhanced performances demanded for high speed optical communication systems [1]. From theoretical point of view, three dimensional confinement of carriers in quantum dots would results in the formation of the population inversion under much lower current injection. Since the successful report on growth of self-assembled InAs/GaAs(InP) QDs in Stranski-Krastanow (SK) mode with considerable crystal quality and high areal density, intensive experimental efforts have been devoted to realize proposed superior performances of QD lasers in the range of 1.3(1.55)µm wavelength [1]. Although low threshold current at room temperature have been observed in some real 1.3 µm InAs/GaAs QD lasers, temperature stability of these lasers had degraded from theoretical predictions [2]. This is attributed to the closely energy spaced of the discrete hole states in QDs. One effective suggested method to overcome thermal broadening of holes is to provide excess hole concentrations via moderate p-doping in GaAs barrier. Higher modal gain and more temperature stability of threshold current have been observed in p-doped QD lasers experimentally [3]. However injection of more excess holes to the wetting layer, leads to higher non-radiative Auger recombination [4]. One of the essential characteristics of a laser to be investigated is its noise aspect. Actually the value of the relative intensity noise (RIN) plays a key role in estimating the transmission data rate and the maximum possible distance of fibre-optic links. How much lower be the RIN value of a laser, higher transmission rate through longer distance could be reliable [5]. The first measurements on intensity noise of p-doped QD lasers in 1.3µm wavelength have been reported in 2012 by G. Lin et. al.[6]. Their results have shown a level of -135 to -155 (dB/Hz) over a wide range of frequency up to 10(GHz), for a p-doped 1.3µm quantum dot laser in which the QD layers have been grown with uniform barrier thickness [6]. In this paper we seek to study the effects of p-doping on RIN value of InAs/GaAs QD lasers from a theoretical point of view. The rest of this paper is organized as follows. In Section 2, we present the governing equations and the theoretical modeling approach. In Section 3, the results on the intensity noise analysis of a QD laser are discussed. Finally, conclusions are presented in Section 4.

2 Theoretical Modeling

Regarding the various system of rate equations for modelling characteristics of QD lasers, we develop a rigorous theory based on the theoretical model of Ref. [7]. For evaluating the relative intensity noise of 1.3µm QD lasers, the separate electron and hole states for GaAs-barrier and wetting layer have been included in addition to the nonlinearity of gain. The definition and value of all the parameters used in this model have been outlined in table I. Since the concentration of carriers in wetting layer state, strongly affects the Auger recombination process, the carrier relaxation rate have been calculated considering phonon-assisted and Auger relaxation [7].

Table I- Value of structural parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of QD layers</td>
<td>8</td>
</tr>
<tr>
<td>ρ</td>
<td>Surface density of QDs(cm⁻²)</td>
<td>6×10¹⁰</td>
</tr>
</tbody>
</table>
The rate equations have been written considering the lasing action from the QDs’ ground state and first excited state as the first and the second lasing modes respectively under pumping current density of J (A/m2). To investigate the RIN, we consider a time dependent small signal perturbations, $\delta N_B^{(h)}(t)$, $\delta f_j^{(c)}(t)$ and $\delta s_j(t)$ for all the carrier concentration in barrier, densities of occupation probabilities of QD levels and photon densities around the steady state work point as follows.

$$n_b^{(h)}(t) = N_b^{(h)} + \delta n_b^{(h)}(t)$$

(1)

$$f_j^{(c)}(t) = f_j^{(c)} + \delta f_j^{(c)}(t) , \ (i = w, 0, 1, 2)$$

(2)

$$s_j(t) = S_j + \delta s_j(t) , \ (j = 0, 1)$$

(3)

While $n_b^{(h)}(t)$ and $f_j^{(c)}(t)$ stand for the whole time dependent value of the electrons (holes) concentration in GaAs barrier, density of occupation probabilities for electrons (holes) in wetting layer and three discrete energy levels in QDs respectively and $S_0^{(1)}(t)$ represents the total number of photons of the first (second) lasing mode. The steady state values of the mentioned variables, $N_b^{(h)}$, $f_j^{(c)}$, and S_j under a fixed injection current, would be calculated by solving twelve coupled rate equations. As well the small signal parts of the rate equations might be linearized by neglecting the quadratic and higher powers of δs. Langevin noise sources are added to the rate equations. In rate equation of the holes in wetting layer state, the term $\frac{N_b \theta d}{\tau_{bd}}$ is added to represent the excess hole concentration in the p-doped QD lasers. It has been allowed the gain to vary with photon numbers for nonlinear gain effects [7]. Under Markovian assumptions, the Langevin noise sources might satisfy the following general relations [8].

$$\langle F_i(t) \rangle = 0$$

(4)

$$\langle F_i(t), F_j(t') \rangle = 2D_{kk} \delta(t-t')$$

(5)

Where angle brackets$\langle \rangle$, show the ensemble average and D_{kk} denotes the diffusion coefficients associated with the corresponding noise sources. The auto-correlation D_{kk} can be considered as the terms in the rate equations which have been added to or subtracted from the number of carriers and photons [8]. The cross-correlation coefficients D_{ik} can be interpreted as the terms which have been subtracted from the number of carriers and photons [8]. By taking Fourier transform from the linear small signal rate equations and representing them in a single matrix equation, we obtain a closed from. The intensity noise at a given frequency ω would be characterized by the relative intensity noise (RIN) per unit bandwidth defined as [8]:

$$\frac{RIN}{\Delta f} = \frac{S_p(\omega)}{S_{T}^2}$$

(6)

while $S_T = S_0 + S_1$ stands for the total number of photons at steady state work point. The total spectrum of photons might be evaluated by solving the matrix equation.

In the next section, the numerical calculated results of RIN in the 1.3µm InAs QD lasers based on the above model would be presented.

3 Results and Discussion

In order to investigate the RIN properties of 1.3µm QD lasers, twelve rate equations have been solved under constant injection current J within Runge-Kutta method. The Light-Current (L-I) characteristics of un-doped and p-doped QD lasers have been calculated at temperature T=300K and have shown in Figure 1. As depicted in p-doped QD laser, the output power is higher than un-doped one because of excess holes which provide higher modal gain. The values of RIN in p-doped and un-doped QD lasers have been evaluated in Figure 2, for injection current density of $J=12$ (kA/cm2). It is demonstrated that noise intensity has lower level in p-doped QD lasers comparing with un-doped one. It can be deduced that p-doping introduces two new terms added to cross and auto-correlation coefficients of hole density at wetting layer state. Among these two terms, the term added to cross correlation coefficient has negative value with larger amplitude comparing with positive value of the new term in auto correlation coefficient. Hence RIN in p-doped QD laser gets smaller value than in un-doped one. It is also depicted that although p-doping improves noise intensity characteristics but it
Reduces modulation bandwidth by decreasing resonance frequency.

![Graph showing output power vs current for un-doped and p-doped QD lasers.](image1)

Figure 1- L-I characteristics of un-doped and p-doped QD lasers at temperature T=300K.

To investigate the effect of injection current on noise intensity of p-doped QD lasers, we have evaluated RIN value of p-doped QD laser with 8 QD layers and QD areal density of p=6×10^{10} (cm^{-2}) similar to structural parameters considered at [6]. Figure 3, shows RIN value of p-doped QD laser with doping concentration of Na=5×10^{16} (cm^{-3}) at three current density of J_{d}=6, J_{d}=12 and J_{d}=18 (kA/cm^{2}). As it is shown by increase of current and output power, the RIN value reduces from -130 to -140 (dB/Hz). It is evident that increase of output power results in decrease of relative intensity noise. This reduction behaviour due to increase of output power and calculated amplitudes of RINs are in agreement with experimental results reported recently.

![Graph showing RIN vs frequency for p-doped and un-doped QD lasers.](image2)

Figure 2- RIN in p-doped with doping concentration of N_{a}=5×10^{16} (cm^{-3}) and un-doped QD lasers at I=12 (mA)

4 Conclusions

The evaluated values of RIN in p-doped and un-doped QD lasers demonstrate that noise intensity has lower level in p-doped QD lasers comparing with un-doped one. It is also depicted that although p-doping improves noise intensity characteristics of QD lasers but it reduces their modulation bandwidth by decreasing the resonance frequency. From calculations it is also evident that increase of output power results in decrease of relative intensity noise. This reduction behaviour due to increase of output power and calculated amplitudes of RINs are in agreement with experimental results reported recently.

![Graph showing RIN vs frequency for p-doped QD laser.](image3)

Figure 3- RIN value of p-doped QD laser with doping concentration of Na=5×10^{16} (cm^{-3}) at three current density of J_{d}=6, J_{d}=12 and J_{d}=18 (kA/cm^{2})

References

