بررسی عددي انتشار، پاژتаб، و شکست نور در یک محیط دوشکستی

فرزاد وزیری علیمیارلو و مسعود رضوانی جلال

مالیر، دانشگاه مالیر، گروه فیزیک

چکیده - در ابتدا این مقاله، فرمول بندي انتشار نور در یک محیط دو شکستی با محور های اشترييک متعامد به دست مي آيد. سپس قوانين پاژتاب و شکست در سطح مشترک تحت بين یک محیط همسانگرد و یک محیط دو شکستی استخراج مي شوند. در آدامه، فرآيند پاژتاب و شکست از سطح مشترک مذكور و نيز وجود زوايای بروستر و حدين به صورت عددی برای تمام زوايای فرود از محیط همسانگرد به محیط ناهمسانگرد به طور عددی مورد بررسی قرار مي گيرد. نشان داده مي شود كه مقايدforder و حدين به جهت كنترلي پاژتاب

کليه واز- انتشار، پاژتاب، شکست، راپر، بروستر، حدين محیط دو شکستی.

Numerical Investigation of Light Propagation, Reflection and Refraction in a Birefringent Medium

Farzad Vaziri Alamdarlo, Masoud Rezvani Jalal

Department of Physics, Malayer University, Malayer

Abstract- In the first part of this paper, the formulation of light propagation in a birefringent medium with orthogonal optical axes is obtained. Then, the laws of reflection and refraction in a plane interface between an isotropic medium and a birefringent medium are extracted. In continuation, the reflection and refraction of light and existence of Brewster and critical angles for all incidence angles from the isotropic medium is numerically investigated. It is shown that Brewster and critical angles are dependent on direction of incident beam.

Keywords: Propagation, Reflection, Refraction, Brewster Angle, Critical Angle, Birefringent Medium.
کدام از این باریکه‌ها زوایای ورودت و زوایای جدید حد خاص خود را دارند و این زوایا بر خلاف ممایزه‌های همسانگردی به جهت می‌سپانی باریکه‌های فرصتی وایسته‌اند.

۲- روابط تحلیلی
در این قسمت به فرمول بنده انتشار، از بودن، و شکست در محیط با استفاده از شکستی برداشته می‌شود.

۲-۱- انتشار
گذره‌های الکتریکی یک ممحیط در شکستی در چارچوب اصل به دلیل یک ماتریس قطراتی ای است. جواب‌ها همراه با انتشار در محیط‌های مختلف با استفاده از معادلات بدون چشمه مکسول و جایگاهی زیر قابل حصول است.

\[\mathbf{V} \rightarrow i \mathbf{k}, \quad \frac{c}{i} \rightarrow -i \omega \]

که در آن \(k \) بردار انتشار و \(\mathbf{k} \) فکرسون‌رایه ای است. اگر \(\mathbf{k} \) بردار یک انتشار باشد نگاشته استفاده همگزمان از قانون آمر و قانون فارادی به رایت زیر منجر می‌شود:

\[\mathbf{v} = \mathbf{E} \frac{c}{i} \mathbf{k} \]

با تعریف ضریب شکست موتر به صورت

\[N = \frac{c}{i} \mathbf{k} \]

و قرار دادن آن در معادله (۵) خواص داشت:

\[\begin{bmatrix} \frac{v^2}{2} - \lambda^2 \mathbf{c}_{11} - \lambda^2 \mathbf{c}_{11} & \mathbf{c}_{11} & \mathbf{c}_{11} & \mathbf{E}_1 \end{bmatrix} \]

و مطابق می‌شود با انتشار در محیط غیر همسانگردی، این قرار دادن آن در معادله (۵) خواص داشت:

\[\frac{1}{N^2} \mathbf{v}^2 - \lambda^2 \mathbf{c}_{11} - \lambda^2 \mathbf{c}_{11} + \frac{1}{N^2} \mathbf{E}_1 = 0 \]

با مطابقت (۵) می‌توان ضریب شکست موتر را در هر جهت محاسبه کرد. چون این معادله بر حسب \(N \) درجه دوم است برای هر جهت انتشار در ضریب شکست موتر تولید می‌شود.

۱- مقدمه
با داشتن روابط ساخته‌ندی الکتریکی و مغناطیسی یک محیط می‌توان مسئله انتشار امواج الکترومغناطیسی را با استفاده از معادلات مکسول و اعمال شرایط مرزی و تطبیق فاز استخراج کرد. [۱۱] به‌طور کلی این معادله‌گیری محیط باعث خواهد شد که بررسی مسئله انتشار نور جز در جالش‌های تحلیلی گردد. همین‌طور بررسی‌ها را وادر کرده است که دنبال حل این مسئله محیط باعث خواهد شد. که در آن \(k \) بردار انتشار و \(\mathbf{k} \) فکرسون‌رایه ای است. اگر \(\mathbf{k} \) بردار یک انتشار باشد نگاشته استفاده همگزمان از قانون آمر و قانون فارادی به رایت زیر منجر می‌شود:

\[\mathbf{v} = \mathbf{E} \frac{c}{i} \mathbf{k} \]

با تعریف ضریب شکست موتر به صورت

\[N = \frac{c}{i} \mathbf{k} \]

و قرار دادن آن در معادله (۵) خواص داشت:

\[\begin{bmatrix} \frac{v^2}{2} - \lambda^2 \mathbf{c}_{11} - \lambda^2 \mathbf{c}_{11} & \mathbf{c}_{11} & \mathbf{c}_{11} & \mathbf{E}_1 \end{bmatrix} \]

و مطابق می‌شود با انتشار در محیط غیر همسانگردی، این قرار دادن آن در معادله (۵) خواص داشت:

\[\frac{1}{N^2} \mathbf{v}^2 - \lambda^2 \mathbf{c}_{11} - \lambda^2 \mathbf{c}_{11} + \frac{1}{N^2} \mathbf{E}_1 = 0 \]

با مطابقت (۵) می‌توان ضریب شکست موتر را در هر جهت محاسبه کرد. چون این معادله بر حسب \(N \) درجه دوم است برای هر جهت انتشار در ضریب شکست موتر تولید می‌شود.
محاسبات عددي به عنوان یک مثلث عددي، محیط همسانگرد فرود از خلا با ضریب شکست $n_i=1/n_0$ در نظر می گیریم. محیط دوم نیز $n_i=1/n_0$ لحاظ می شود (این مقادیر مربوط به محیط خاصی نیستند و صرف برای حل عددي انتخاب شده اند). سطح مشترک نیز با محیط همسانگرد فقط دارای دو قطعیش در هر جهت انتشار است.

2- بازتاب و شکست
در فرود نور از یک محیط همسانگرد به سطح مشترک ضریب شکست و زاویه فرود محیط همسانگرد و N مقادیر متناهی برای محیط و شکست هستند. حل همیزان معادله های (7) و (8) به میزان N به دست می دهد که هر کدام از آنها از طریق معادله (7) به یک بک جدول از 0 مقدار می شود. حساب دیگر نور در هنگام ورود به محیط دوم به دوی باریکه شکستشه می شود. این بازتاب برای باریکه n_i، β و γ به همراه با آنها (برای مثال β) به صورت معروف هستند [12].

$$n_i \sin \theta_i = N \sin \theta$$

(7)

که در آن n_i ضریب شکست و زاویه فرود محیط و N مقادیر متناهی برای محیط و شکست هستند.

شکل 1. طرحوره فرود نور از محیط همسانگرد به یک محیط دویکتی.

این چارچوب را می توان با زاویای چرخش اول به محورهای ایستاده ویژه کرد. برای مثلث این زاویا به صورت $0 < \theta < \pi$ و انتخاب می شوند. برای هر θ، با توجه به رابطه (3) نوشته شده، حاصل مقدار نیاز به محیط مشترک. به طور مثال به چارچوب امکان پذیر است که بازتاب نور به شکست پایین یا زاویای قطعی و سمتی مختلف (نیست به چارچوب امکان پذیر) به سطح مشترک می ناید و بعد از یکی کردن ضریب شکست موثر و زاویای شکست مربوطه، شرایط مزی و فعالیت کردن و دانه میدان ها را بر حسب دانه فرود محاسبه می کند.

برای مثال، یک میدان فردی با قطعیش s در نظر می گیریم. در شکل 2 دانه میدان بازتابش در قطعیش s (شکل 2-یا) بر宥 s (شکل 2-یب) بر حسب زاویه فردی β در از 0 تا π و زاویه قطعیش γ در از 0 تا π درجه نشان شده است. این شکل نشان می دهد که بر خلاف محیط همسانگرد، قطعیش فردی s را فقط به قطعیش بازتاب s تبدیل می کند. محیط دویکتی در بازتاب قطعیش s هم قطعیش s و هم قطعیش s هم قطعیش s هم قطعیش s هم قطعیش s هم قطعیش s.
با توجه به دانشگاه صنعتی شیراز

8 تا 10 بهمن 1392، دانشگاه صنعتی شیراز

زایده حد می رسد و بعد از آن با زوایای مختلط به شکست‌ادام می‌دهد امازایه حد باریکه دوم از طریق فرمال بندی ارائه شده وجود ندارد.

نتیجه‌گیری

بررسی عمده بازتاب و شکست در محیط دو شکستی نشان می‌دهد که نور فرودی به دو بار می‌شکند و قطرش‌های کوچک فرودی بعد از بازتاب به هم تبدیل می‌شوند. از طرف دیگر برای هر کدام از باریکه‌های شکست یک زاویه بروست و یک زاویه مناسب قرار گرفته باید زاویه حد وابسته به زاویه سمتی فردی و وجود دارد.

سیاست‌گذاری

از دانشگاه متا من و کارکن امکانات به حجم فراورده‌های امکانات جهت به تمر رسمیت در این شکل و شکل‌های به دوی هم‌هوا باریکه‌ای بر حسب رادیان مستقیم.

مراجع