Abstract- In this paper we try to describe the interaction of the Heisenberg spin model with quantized field using quantum discord under the rotating wave approximation. In this view, using the proposition in quantum discord we obtain the optimized operator. Then we study the physical properties of this model and compare the results with the similar ones.

Keywords: Photon-spin interaction, Quantum Discord, Spin Chain.
محاسبهی برهم کنش کوانومی در سال‌های آخر مورد توجه قرار گرفته است. مدت‌های انتقال بر این بود که برهم کنش کوانومی را می‌توان با استفاده از درهم‌نهشی داد و برهم کنش کوانومی تفسیر دقیق در اینجا می‌باشد.

در اینجا به برهم کنش کوانومی مورد استفاده قرار گرفته است. به نظر می‌رسد درهم‌نهشی می‌تواند برای تشخیص برهم کنش کوانومی نمایندگی یک اکثریت و مانند باشد.

همانطور که مشخص می‌باشد این مدل ورودی شرط فوق دیگر نیازی به روشن‌سازی بهره‌سازی نیست.

2- برهم کنش میادنیه های نیتری فو دو اسپین

در حضور میادنی کوانومی

حال با توجه به فضاییکی که اینجا مطرح شده بود بررسی مدل فیزیکی شالی سیستمی مشکل از دو اسپین با برهم کنش میادنیهای کوانومی در حضور میادنی کوانومی با کمک مدل تقریب موج دوار می‌باید از طریق که به صورت زیر بررسی می‌گردد:[2]

\[
H = \sum_i \Omega_i \sigma_i^z + \Omega_2 \left[\alpha \left(\sigma_i^+ \sigma_2^- + \sigma_i^- \sigma_2^+ \right) + \beta \left(\sigma_i^x \sigma_2^x + \sigma_i^y \sigma_2^y \right) \right]
\]

که فرض کرده که ویژه‌های حل‌یابی با پیوستن و فرض کرده که ویژه‌های حل‌یابی با پیوستن و

هم‌سمتی کلاسیکی به صورت زیر باید باشد:

\[
\rho_A = \rho_B = \rho_{AB} = \rho_B \log \rho_B
\]

و ماتریس تاکیدی دو زیرسیستم

\[
\rho_{AB} = \rho_A + \rho_B - \rho_{AB}
\]

و ماتریس تاکیدی دو زیرسیستم

\[
\rho_A = \rho_B = \rho_{AB} = \rho_B \log \rho_B
\]

و ماتریس تاکیدی دو زیرسیستم

\[
\rho_A = \rho_B = \rho_{AB} = \rho_B \log \rho_B
\]

و ماتریس تاکیدی دو زیرسیستم

\[
\rho_A = \rho_B = \rho_{AB} = \rho_B \log \rho_B
\]

و ماتریس تاکیدی دو زیرسیستم

\[
\rho_A = \rho_B = \rho_{AB} = \rho_B \log \rho_B
\]

و ماتریس تاکیدی دو زیرسیستم

\[
\rho_A = \rho_B = \rho_{AB} = \rho_B \log \rho_B
\]

و ماتریس تاکیدی دو زیرسیستم

\[
\rho_A = \rho_B = \rho_{AB} = \rho_B \log \rho_B
\]

و ماتریس تاکیدی دو زیرسیستم

\[
\rho_A = \rho_B = \rho_{AB} = \rho_B \log \rho_B
\]

و ماتریس تاکیدی دو زیرسیستم

\[
\rho_A = \rho_B = \rho_{AB} = \rho_B \log \rho_B
\]
حال با استفاده از ویژه مقادیر و ویژه بردارهای ماتریس (11) به ارای 0، ماتریس چگالی گرماپیا را مطلب رابطه زیر بدست می‌آوریم [4]:

\[\rho = Z^{-1} \sum_{i=1}^{4} \exp(-\beta E_i) |\Psi_i\rangle\langle \Psi_i| \]

که در این رابطه Z تابع پارش، \(\beta = \frac{1}{k_B T} \) تابع بولتزمن ها ویژه مقادیر و \(|\Psi
angle \) ویژه حالات هکلونیو تذکر شده با \(\Omega = 2 \) است. با توجه به ماتریس \(\rho(T) \) بین شدن ماتریس چگالی گرماپیا |(عصر این ماتریس چگالی ای با حالت X بیان شده مقایسه) (13)\n
\[\rho(T) = \frac{1}{Z} \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{bmatrix} \]

معادله (11) از دیدگاه کوانتومی بر هم کنش اسپین- فوتون

اکنون با استفاده از هکلونیو فوق به بررسی و محاسبه اختلاف کوانتومی می‌پردازیم. همانطور که در بالا اشاره شد در محاسبه ی این کمیت در حالت کلی دچار مشکل هستند به همین دلیل با استفاده از فرضیه مطرح شده این کمیت را محاسبه می‌کنیم. همانطور که دیدیم برای محاسبه در ابتدا باید به بررسی دو شرط مطرح شده بردارهای با بررسی دو نمودار شکل (1) می‌پنیم که رابطه (8) برقرار است به طوریکه نمودار با انتخاب به ارای \(j =-1, \quad j_z = 0.8, \quad n=1, \quad t=0.2 \) مقدار

همواره مثبت می‌باشد.
\[Q(\rho) = \frac{1}{2} \left(\left(a | Z \right) \rho \left(a \right) + \left(a \right) \rho \left(a \right) + \left(b \right) \rho \left(b \right) + \left(b \right) \rho \left(b \right) \right) \]

\[p_k = \text{tr} \left(\left(\sigma_x^A \otimes I \right) \rho \left(\sigma_x^A \otimes I \right) \right) \]

\[p_k = \text{tr} \left[\begin{bmatrix} e & 0 & 0 & d \\ 0 & f & 0 & 0 \\ 0 & 0 & a & 0 \\ c & 0 & 0 & b \end{bmatrix} \right] = 1 \]

\[\rho_{Bk} = \left(a | Z \right) \rho \left(a \right) + \left(b | Z \right) \rho \left(b \right) \]

\[S(\rho_B) = \frac{a - e}{Z} \log \left(\frac{a + e}{Z} \right) + \left(b - f \right) \log \left(\frac{b + f}{Z} \right) \]

\[Q(\rho) = S(\rho_B) + S(\rho_{Bk}) - S(\rho_{AB}) \]