Abstract- In this paper, the band structure, optical absorption spectra and quantum efficiency of graphene nanoribbons photodetector at both modulated and constant external transverse electric field have been investigated. Our calculations show that applying the electric field would modify the band gap, remove the states degeneracy, alter the sub-band spacing, cause the changes in the optical absorption spectra, and affect the quantum efficiency. We show that the strength and the period of the electric field have important effects on the adsorption coefficient and quantum efficiency peaks.

Keywords: Quantum Efficiency, Graphene Nanoribbon, Transverse Electric Field.
گرافی با توجه به ویژگی‌های الکترونیکی و نوری منحصربه‌فردی که دارد، پژوهش‌های گسترده‌ای را در سال‌های اخیر به خود اختصاص داده است. گرافی لایه‌ای کربنی با ضخامت یک اتم است. گرافی پیشرفته‌ترین حامل جریان در بین نیمه‌های دیالست و حامل حامل مناسب‌تر از رسیداری ۹۹ می‌باشد. همچنین گرافی نکذ در حدود ۲/۳ از نور فروودی را در باره وسیعی از طویل که نورالغیظی جذب می‌کند.

در حالی‌که، گرافی با صورت نورالغیظی پذیرایه‌ای در وارده اند که در بعضی موارد، خواص نفوذی از هدایت می‌دهد. خواص الکترونیکی نانویی نانویی زنگی قلم‌های مختلفی از جمله گرافی نوری، صورت و نانویی و بردار کاراصل آن وابسته است. خواص نوری نانویی نانویی، متاثر از گرافی اترزی است.

۱- مقدمه

۲- محاسبه ضریب جذب نوری نانویی نانویی گرافی

توسعه از قانون طالبی فرمی و جمع بر روی همه ترازهاي باین الکترولیت‌ها مشابه‌تر باشد. ماده در بخش ۳ رابطه کیوانی می‌باشد. در بخش ۴ بستگی به جهت عرضی و محدوده معاملاتی مشابه در بخش ۴ ارائه می‌گردد.

شکل ۱: اعمال میدان در جهت عرضی و محدوده ماتریکس در نهال و با پایینی نانویی نانویی گرافی، میدان را در ناحیه و با مدوله مشابه می‌باشد.

ساختار این مقاله به ترتیب زیر تنظیم شده است: در بخش ۳ محاسبه ضریب جذب نوری نانویی گرافی می‌باشد. در بخش ۲ نهایی کیوانی در اشکالی در انتهای کیوانی می‌باشد. در بخش ۴ این مقاله بستگی به جهت عرضی و محدوده معاملاتی مشابه است.

\[
\alpha(\omega) \propto \sum_{n,v} \int \frac{\partial^2 \Psi_n(k_f)}{\partial k^2} \left| \Psi_n(n',k_v) \right|^2 \delta(E_f(k_f) - E_i(k_v) + h\omega)
\]

در این معادله، \(\alpha(\omega)\) ضریب جذب، \(\Psi_n(k_f)\) نمای هالیتی، \(\n\) شماره‌بندی نانویی، \(\delta\) فضای فرمی، \(\delta(E_f(k_f) - E_i(k_v) + h\omega)\) بنر محدوده قرار داده‌شده است. همچنین البته با این مقاله بستگی به جهت عرضی و محدوده معاملاتی مشابه است.

۳- مطلق شکل (۱)، میدان الکترونیکی نیروی نانویی و کربنی نانویی در اتم این نهال با پایینی نانویی نانویی گرافی در امتداد نهال و با پایینی نانویی نانویی گرافی در امتداد نهال و با پایینی نانویی نانویی گرافی
بازه کواننومی برای نانو روبان آرچیجر با عرض 12 ام میکرون بیرونی به شکل ۱ (الف) و (ب) در شکل (۳) ضم شده است. همانطور که مشاهده می‌شود، با اعمال میدان الکتریکی عرضی (د) و در حضور میدان الکتریکی عرضی ماده شده (---) با تناوب w/2، مدل هم‌اندازه‌ای که در شکل (۴) مشاهده می‌شود، اعمال میدان الکتریکی ثابت بر طیف جذب نانو روبان زیگزاگ را نمایش می‌دهد. همانطور که در شکل (۴) مشاهده می‌شود، اعمال میدان الکتریکی ثابت، تیپ‌گی نازل‌ها را کاهش و فاصله نازل‌ها از یکدیگر را افزایش داده و بخاطه میدان الکتریکی عرضی پرتاب شده، طیف جذبی را به طول موج مهر کوچکتر انتقال می‌دهد. نمای نژدکتر شکل (ب) و (ب) به ترتیب، در شکل (چ) و (ب) مشاهده می‌شود.

با زدن کواننومی نانو روبان زیگزاگ در پذیرفتهای مادون قرمز در حضور میدان الکتریکی عرضی ثابت در شکل (۵) ضم شده است. مشاهده می‌شود که نانو روبان زیگزاگ در ناحیه مادون قرمز دارای بازه کواننومی بسیار کوچکی در حدود ۵۰٪ است. با توجه به توضیحات ذکر شده در مورد شکل (۴) اعمال میدان الکتریکی عرضی ثابت بازه کواننومی را به بیش از ۱۵٪ افزایش داده و با تغییر شدت میدان الکتریکی عرضی نانو اندمازه پیک جذبی و طول موج آن را تنظیم کرد.

(۲) در معادله (۲)، η = 1 - exp(-α(ω)d)

در ادامه تابی میدان الکتریکی ثابت بر طیف جذبی نانو روبان زیگزاگ را نمایش می‌دهد. همانطور که در شکل (۵) بازه کواننومی نانو روبان آرچیجر با عرض 12 ام میکرون به هم‌اندازه‌ای در حضور میدان الکتریکی عرضی در مادون قرمز یکی است، با اعمال میدان الکتریکی عرضی (ب) با اعمال میدان الکتریکی عرضی ماده شده (---) به تناوب w/2. تفاصل ترکیدن در این سطح که به ازای میدان الکتریکی با ناپ w/2 نسبت به دیگر نانو به ترازها مسطح‌تری شوند و تعداد اتم‌ها در عرض نانو روبان است.

در شکل (۳) بند انرژی نانو روبان آرچیجر را نشان می‌دهد. همانطور که در شکل (۴) مشاهده می‌شود، اعمال میدان الکتریکی عرضی مدل به طول اعمال میدان الکتریکی ثابت را کاهش داده و ترازها را بالا کرده‌است. مشاهده می‌شود که به ازای میدان الکتریکی با ناپ w/2 به دغ‌تر نانوب‌های مسطح‌تری شوند. تعداد اتم‌ها در عرض نانو روبان است.
4- نتایج گیری

با توجه به نتایج، کانادومی نانو روبان آریمچر و زیگاک تحت تأثیر میدان الکتریکی عرضی ناتمام و مدوله شده با تناوب‌های مختل بر مبنای روش تکنیکی نسبی شده است. همچنین طیف جذبی با استفاده از قانون طلا ویری مدل است. میدان الکتریکی عرضی همانند استفادهی توان روبان را حول محور طولی از بین می‌برد. میدان الکتریکی عرضی نمایش به تغییراتی از جمله تغییر‌های برند انرژی، کاهش توان‌کشی‌های تراز، تغییر فاصله انرژی، تغییر طیف جذبی و پراکندگی کانادومی می‌شود. اعمال میدان الکتریکی عرضی ناتمام بیان‌رود کانادومی زیگاک نتایج بهتری را از بین می‌برد و طیف جذبی آن را به طول‌موج‌های کوچکتر انتقال می‌دهد در مقابل. با اعمال میدان الکتریکی مدوله شده با تناوب \(\frac{w}{2}\) در نانو روبان آریمچر، ترازها مسطح شده و به هم نزدیک می‌شوند و طیف جذبی به طول‌موج‌های بزرگ‌تر انتقال یافته و پراکندگی کانادومی افزایش می‌یابد.

مراجع