Improvement of Quantum Efficiency In Graphene Nanoribbons-Based Photodetector by External Transverse Electric Field

M. Heidari, A. Zarifkar, and M. H. Sheikhi

The School of Electrical and Computer Engineering, Shiraz University, Shiraz.

Abstract- In this paper, the band structure, optical absorption spectra and quantum efficiency of graphene nanoribbons photodetector at both modulated and constant external transverse electric field have been investigated. Our calculations show that applying the electric field would modify the band gap, remove the states degeneracy, alter the sub-band spacing, cause the changes in the optical absorption spectra, and affect the quantum efficiency. We show that the strength and the period of the electric field have important effects on the adsorption coefficient and quantum efficiency peaks.

Keywords: Quantum Efficiency, Graphene Nanoribbon, Transverse Electric Field.
شود و به نانو روبان انفصال ندارند.

1- مقدمه

گرافن با توجه به ویژگی‌های الکترونیکی و توری منحصر به فردی که دارد، پژوهش‌های گسترده‌ای را در سال‌های اخیر به خود اختصاص داده است. گرافن لایه‌ای ای کاملاً با ضخامت یک اتم است. گرافن پیشانی تحرک حامل ها در بین هیدر اهای دارایت و تحرک حامل ها در آن به بهبود از همکنی گرافن تک لایه‌ای در حدود ۲۲% است. از نظر فیزیکی، در پرتاب و سیگنال از طرف الکترون‌ورفتی جذب می‌کند که بیش از ۵۰ برابر گلیم-ارسانی با ضخامت مشابه است.

2- محاسبه ضریب جذب توری نانو روبان گرافن

نرخ جذب فوتون‌ها در نانو روبان گرافن را می‌توان با استفاده از قانون طالبی فرمی و جمع بر روی همه ترازهای باند و الاتس و هداپی محاسبه کرد. معادله (۱)

کانون طالبی فرمی را برای گذار از یک حالت کوانتمی k_i به حالت کوانتمی نهایی k_f نمایش می‌دهد.

$$\alpha(\omega) \propto \sum_{\nu,\nu',\mu,\mu'} \sum_{k} \left| \langle \Psi_{\nu}(n,k_f) \rangle \frac{\partial H}{\partial k} \Psi_{\nu'}(n',k_i) \right|^2$$

$$\left[f_{\nu}(n,k_f) - f_{\nu'}(n',k_i) \right] \delta \left[E_\nu(k_f) - E_{\nu'}(k_i) + \hbar \omega \right]$$

در این معادله ($\alpha(\omega)$ ضریب جذب، Ψ تابع موج باند، Ψ_{ν} تابع موج باند ولاتس n شماره تراز در باند هدایت، $\Psi_{\nu'}$ تابع موج باند ولاتس n' شماره تراز در باند و الاتس H ماتریس شماره تراز در باند والاتس، H الماتریس، f_{ν} تابع دلتای دیراک که دلتای دیراک δ، f_{ν} تابع دلتای دیراک که k_1 باند هدایت و k_2 باند ولاتس، E_{ν} انرژی نهایی الکترون ν از جذب فوتون ν' تابع نهایی الکترون باشد.

مطالعه شکل (۱)، میدان الکتریکی توسط دو الکترود که در امتداد استی و پلی بین نانو روبان قرار دارند اعمال می‌کرد.
بابده کوانثومی برای نانو روان آرمجری با عرض 12 ان. م مربوط به شکل 2 (الف) و (ب) در شکل (3) همانطور که مشاهده می‌شود با استفاده از میدان الکتریکی عرضی می‌توان بارده کوانثومی را لمس از 200/ که بهبود داد و بیک جذبی را به ناحیه مادون قرمز با طول موج بزرگتر انتقال داد.

2- بابده کوانثومی

یکی از شاخه هایی که برای مقایسه عملکرد آشکارساز‌ها بکار می‌رود، بابده کوانثومی است که بیانگر نسبت تعداد الکترون‌های این است که در تاش نوری در یک درای ریز الکتریکی شرکت می‌کند. بیانگر نسبت فوتون‌هایی که بر سطح آشکارساز فروش می‌آیند. به چه بارده کوانثومی بزرگتر باشد، آشکارساز عملکرد بهتری دارد.

مرجع [7] بابده کوانثومی را برای آشکارساز مادون قرمز مبتنی بر نانو روان آرمجری بر مبنای محاسبات عدید بدست آورده است. رابطه تقیی برای بارده کوانثومی به صورت رابطه (2) می‌باشد.

$$ \eta = 1 - \exp(-\alpha(\omega)/d) $$

در مقدمه (2)، η بابده کوانثومی $\alpha(\omega)/d$ ضریب جذب و d ضخامت تک خاکی نانو روان گرافی ای می‌باشد. (الف)

شکل (3) این انرژی نانو روان آرمجری را نشان می‌دهد. همانطور که در شکل 2 (ب) مشاهده می‌شود، اعمال میدان الکتریکی عرضی محلول شده به تناوب 2 در سیال، فاصله ترازها را کاهش داده و ترازها را صاف می‌کند.. مشاهده می‌شود که به ازای میدان الکتریکی با تناوب 2 در سیال به دیگر تناوب‌ها ترازها مستحکم‌تری می‌شوند. در تعداد اتم‌ها در عرض نانو روان است.

در ادامه تاثیر میدان الکتریکی ثابت بر طوف جذب نانو روان زیگزاگ را بررسی می‌کنیم. همان‌طور که در شکل 4 (الف) و (ب) مشاهده می‌شود، اعمال میدان الکتریکی ثابت تیپه‌گی ترازها را کاهش و فاصله ترازها را کمک‌بینگر افرآیند به خوبی. میدان الکتریکی عرضی محلول شده، طفو جذبی را به طول موج های کوچکتر انتقال می‌دهد. نمای نیز، دکتر شکل 4 (الف) و (ب) به ترتیب، در شکل (ج) و (د) مشاهده می‌شود. بابده کوانثومی نانو روان زیگزاگ در بارده مادون قرمز در حضور میدان الکتریکی عرضی ثابت در شکل (5) رسم شده است. مشاهده می‌شود که نانو روان زیگزاگ در ناحیه مادون قرمز درای جهانی بارده کوانثومی سیاری کوچکی در حدود 50٪ است. با توجه به توضیحات ذکر شده در مورد شکل (4)، اعمال میدان الکتریکی عرضی ثابت بارده کوانثومی را به بیش از 10٪ افزایش داده و با تغییر شدت میدان الکتریکی می‌توان اندازه بیک جذبی و طول موج آن را تنظیم کرد.

شکل 4 بند آنزی نانو روان آرمجری با عرض 12 ان.م. (الف) بدون اعمال میدان الکتریکی عرضی. (ب) با اعمال میدان الکتریکی عرضی محلول شده.
نتیجه‌گیری

بنا بر ارزی و بارزه کوالنتومی نانو روبان آرمچیر و زیگراک، تأثیر میدان الکتریکی عرضی، بیان شده با
نالوب‌های مختص بر مبنی روش تکن بست بررسی شده است. همچنین طیف جذبی با استفاده از قانون طلا وری کمی بر سر میدان الکتریکی عرضی
همانند اختلاف، تأثیر نانو روبان در جذب و حفر طولی از
بین می‌برد. میدان الکتریکی عرضی نمی‌تواند یک تغییری
از جمله تغییر باند ظریف، کاهش نسبی ترازها، تغییر
فصل نزدیکی و اثر سطحی، تغییر طیف جذبی و بارزه کوالنتومی می‌شود. اعمال میدان الکتریکی عرضی یکی
بر نانو روبان زیگراک نسبت تراز ها را از بین می‌برد و
طیف جذبی آن را به طول موج های کوچک تراز می‌دهد. در مقابل، با اعمال میدان الکتریکی مدوله شده با
نالوب/2 در نانو روبان آرمچیر، ترازها مسطح شده و به
هم نزدیکی می‌شوند و طیف جذبی به طول موج های
بردگر انتقال یافته و بارزه کوالنتومی افزایش می‌یابد.

مراجع
83, pp. 1-6, 2011.
Semiconductors: Physics and Materials Properties,
Responsivity In IR Photodetector Based On Armchair Graphene Nanoribbon With P-I-N Structure”,
Superlattices and Microstructures, vol. 52, pp. 605-611,
2012.