محاسبه معادله دینامیکی فازی حاصل از معادلات نرخ لیزر- کابایاشی

در لیزر نیمه رسانا با کاواک عمودی

آکبر جعفری، خسرو مبحوتی، عنرا کیاسیفر و رقه چودار

گروه فیزیک، دانشگاه علمی دانشگاه آرموه، ارومیه

چکیده - در این مقاله با در نظر گرفتن یک زمان پایه معادلات لیزر-کابایاشی را باز نویسی کرده و با وارد کردن جمله گاویسی اختلال به عنوان نوپه و با بی بعید کردن این معادلات، معادله درجه سوم فازی میدان لیزری متغیر بر حسب زمان محاسبه شده است. این معادله تغییرات فاز میدان لیزر بر حسب تغییرات زمان را مشخص می کند. در محاسبه این معادله، فاز و شدت میدان الکتریکی متغیر دینامیکی اصلی در نظر گرفته شده است. نشان داده شده است که دینامیک شدت خروجی بطور دقت بیشتری توسط معادله فازی در مقایسه با معادلات نرخ لیزری تعیین می شود.

کلید واژه- معادله فازی، کاواک عمودی، لیزر نیمه رسانا.

Calculation of dynamical phase equation from Lang- Kobayashi rate equations for vertical cavity semiconductor laser

Jafari, Akbar; Mabhouti, Khosro; Kiasatfar, Ozra; Chodar, Rogayeh

Physics Department, Faculty of Sciences, Urmia University, Urmia

Abstract- In this paper by using lang kobayashi equations in the dimensionless format and adding gussian perturbation as a noise term, the third order phase equation for the laser filed is calculated. In this calculation, the phase and the intensity of the electrical filed has taken as main dynamical variable. It has been shown that the dynamics of the output intensity can be determined more accurately by the phase equation with compared to rate equations.

Keywords: phase equation, vertical cavity, semiconductor laser
1- مقدمه

دینامیک غیرخطی لیزرهای نیمه رسانا از نظر تئوری کاربردی در علم مهندسی سیال و سیال توجه از آن را گرفته است. از جمله می‌توان به کاربرد آنها در زمینه انتقال‌های با داده‌های نوری انتقال سیگنال‌ها، هم به پیوندهای کابیوالی سیستم‌های زیرشکی ها اشاره نمود [1و2]. لیزرهای نیمه‌های نسبتاً به سپر خورانده‌اند تا به سیستم‌های نوری سپر، سیال و سیال کاربردی شوند [3و4]. لیزرهای نیمه رسانا می‌توانند یک ابزار مفید برای مراحل مختلف در اپتیک و آپتیک هستند. لیزرهای نیمه رسانا بر نحوه انتقال نور در سیستم‌های اپتیکی و آپتیکی به دو کاربرد عمده و اقلیتی تقسیم می‌شوند [5و6]. مهندسی لیزرهای نیمه رسانا با کارکردی لیزرهای نیمه رسانا به صورت گسترده در سیستم‌های مختلف و محققان در حوزه اپتیکی و آپتیکی بر این مسائل کار نموده‌اند [7-8]. اما در اینجا، توجه می‌شود که این مقاله فقط نظر کاربرد مقدار فاز نیمه چیف مفید لیزرهای نیمه رسانا هست که در محیط همگن باعث تعیین این مقدار می‌شود. همچنین فرآیند همگنی‌سازی سیستم‌های جفت شده لیزری هنگامی به صورت کامل برقرار می‌شود که مقدار مناسب فاز را برای هر سیستم تأثیرگذار می‌گردد. لیزرهای نیمه رسانا در محیط‌هایی که تغییر مستمر دارند، لیزرهای نیمه رسانا می‌توانند کاربرد داشته باشند. و کال‌دارهای در حوزه اپتیکی و آپتیکی به بررسی این مسائل می‌پرداخته‌اند [9-10].

2- معادلات ترخ لیزرهای نیمه‌های رسانا

معادله ترخ نیمه یکنواخت دینامیک لیزرهای نیمه رسانا با کارکردی عمده و مارکوفی به نمایه زمانی وارون آنها را توصیف می‌نماید.

\[E = \frac{1 + i \alpha}{2} [\Delta n - 1] E + K e^{-i\theta} E (t - \tau) + \sqrt{R} \varepsilon \] (1)

\[\Delta n = -\Delta p + P - \Delta \left| E \right|^2 \] (2)

\[n = \frac{X \omega}{\alpha} \] (5)

\[E = \sqrt{p} \left[1 + \frac{\phi}{\alpha} \right] \exp \left[i \left(\phi - \frac{\phi}{\alpha} S \right) \right] \] (6)

\[\left. \frac{d}{ds} \left(\exp \left[i \left(\phi - \frac{\phi}{\alpha} S \right) \right] \right) = \frac{1 + i \alpha}{2} \left(\frac{X \omega \beta}{\alpha} - 1 \right) \right. \] (7)

\[\left. \frac{d}{ds} \left(\exp \left[i \left(\phi - \frac{\phi}{\alpha} S \right) \right] \right) \right. \]
حاص‌ال زمای نموداری را دارای اهمیت می‌کند، توانایی این معاوضه در تعیین ذاطین دیتامیک به‌منظور نشان‌دهنده شدت خروجی آری‌سی‌بی‌پی بیان‌داده به دلیل این‌که در زمانی انتخاب شده نشان می‌دهد حاکم ایجاد از میدان یا میدان دیتامیک نهایی میدان ایزی را بدون بررسی دسترسی به محدوده زمایی انتخاب شده مشخص می‌کند. در شکل 1، حمل زمای دیتامیکی به‌منظور شدت خروجی
\[\alpha = 3.3, \quad P = 0.42 \]
برای پارامترهای
\[E^2 \]
وضعیت واکنش
\[S \equiv \omega S \]
موج‌های معاوضه. از دیدار:
\[\frac{d\phi}{dS} = \frac{1}{2} \beta \chi + \Delta - \frac{\alpha}{2\omega} (\beta + 1) \]
\[\frac{d\alpha}{dS} = \frac{1}{2} \beta \chi + \Delta \cos[\phi(S - \Theta) - \phi(S)] \]
\[- \frac{\alpha}{2\omega} (\beta + 3) + \frac{R}{P} (S) \cos \left[\phi(S) - \frac{\phi(S)}{\phi} \right] \]
که در آن
\[\Theta \equiv \alpha \omega, \quad \Delta = \frac{K}{\alpha \omega} \]
که معادله از معادله 17 می‌تواند بر حسب مراتب مختلفی از پایین‌ریزی متوانده به صورت زیر نوشته شود:
\[(\Delta/S) + (R/B) \alpha \Phi(S, \zeta) + (\alpha \Phi(S, \zeta) + \ldots) \]
\[\Phi(S, \zeta, \omega) = \Phi_0(S, \zeta) + \alpha \Phi_1(S, \zeta) + \ldots \]
که در آن
\[\Phi_0(S, \zeta) = \frac{\Delta S}{P} + R + B \Phi(S, \zeta) + A \cos[S + \arctan(\zeta)] \]
\[\Phi(S, \zeta, \omega) = \Phi_0(S, \zeta) + \alpha \Phi_1(S, \zeta) + \ldots \]
\[\Phi_0(S, \zeta) = \frac{\Delta S}{P} + R + B \Phi(S, \zeta) + A \cos[S + \arctan(\zeta)] \]
\[\Phi(S, \zeta, \omega) = \Phi_0(S, \zeta) + \alpha \Phi_1(S, \zeta) + \ldots \]
\[\Phi_0(S, \zeta) = \frac{\Delta S}{P} + R + B \Phi(S, \zeta) + A \cos[S + \arctan(\zeta)] \]
\[\Phi(S, \zeta, \omega) = \Phi_0(S, \zeta) + \alpha \Phi_1(S, \zeta) + \ldots \]
\[\Phi_0(S, \zeta) = \frac{\Delta S}{P} + R + B \Phi(S, \zeta) + A \cos[S + \arctan(\zeta)] \]
\[\Phi(S, \zeta, \omega) = \Phi_0(S, \zeta) + \alpha \Phi_1(S, \zeta) + \ldots \]
\[\Phi_0(S, \zeta) = \frac{\Delta S}{P} + R + B \Phi(S, \zeta) + A \cos[S + \arctan(\zeta)] \]
\[\Phi(S, \zeta, \omega) = \Phi_0(S, \zeta) + \alpha \Phi_1(S, \zeta) + \ldots \]
\[\Phi_0(S, \zeta) = \frac{\Delta S}{P} + R + B \Phi(S, \zeta) + A \cos[S + \arctan(\zeta)] \]
- Inspection:

In a previous investigation, it was found that the transmission of light through a specific medium is governed by the following equation:

\[E(t) = \frac{1}{2} \alpha R(t - \tau) \]

where \(E(t) \) is the electric field amplitude at time \(t \), \(\alpha \) is a proportionality constant, \(R \) is the intensity of the incident light, and \(\tau \) is the delay time.

1. **Discussion**

The transmission of light through the medium is influenced by the material properties and the intensity of the incident light. The proportionality constant \(\alpha \) is determined by the material's optical properties and the wavelength of the light.

2. **Conclusion**

The investigation highlights the importance of understanding the transmission characteristics of light through different materials. Further studies are needed to explore the optical properties of various materials to optimize their use in applications requiring high transmission efficiency.

3. **References**