Investigation of optical behaviour of Zinc ferrite nanoparticles

Fariba Ahmadi, Ammar Mohajeran, Sajad Hamreh, Ahmad Yazdani

Department of physics, Tarbiatmodares university, Tehran

Abstract- Because of rich applications, Spinel nanoferrites have attracted the attention of researchers in recent years. In this paper, we investigate structural and optical behaviour of Zinc ferrite nanoparticles with general formula of ZnFe$_2$O$_4$. We study Phase and crystalline structure with the help of X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. We calculate the absorbance wavelength and energy gap of Zinc ferrite nanoparticles from UV-Vis measurement.

Keywords: Energy gap, Optical behaviour, Self- combustion, Spinel, Zinc ferrite nanoparticles
در بین نانومواد، نانوذرات فریت‌ها دسته مهمی از مواد هستند که خواص الکتریکی، مغناطیسی و کاتالیستی گوناگونی دارند. نانوذرات فریت در زمینهٔ ریست پزشکی، مگنتولکتریک و حسگر عازی کازر پوی کنندهٔ فراوانی دارند. فریت مواد نیم‌رسانا با فرمول شیمیایی MFe2O4 هستند که کنندهٔ کاتیونی فازی دو طرفی
[۱] فریت روی (ZnFe2O4) می‌تواند استخراجی است که کاتیونهای Zn2+ در جایگاه‌های چهارچوب قرار داده شوند. در این روش از جمله مواد نیمرسانا هستند که از نظر شیمیایی و گرانبها پایدار بوده و گرایی مناسبی برای کاربردهایی از قبیل موارد نانوماتریک، کانالیستها، فوتوناتانسیما که تصوربرداری شده متناهی و کنگ داده است[۲] در کاربردهایی که به آنها اشاره کرده این نانوذرات یک پارامتر مهم است. اخیراً نانوذرات فریت روی به دلیل وابستگی خواص فیزیکی و شیمیایی به اندازه‌ای تازه در مقایسه با نانوذرات خود، بسیار مورد توجه محققان قرار گرفته‌اند[۲].

روش‌های مختلف مانند هیدروسول، هیدروترمال، خمک کانون انجام‌داده استخراج و تبدیل برای ساخت نانوذرات فریت روی وجود دارد. در بیشتر روش‌هایی که اشاره شده نازبانده مقدار زیادی مواد شیمیایی هستند و زمان واکنش تولید و داده واکنش باید بخواهد. به علاوه این واکنش‌ها مقدار مواد مذکور می‌تواند مکانیکی و موجب آغوش‌گذی ریزتی بیشتر می‌شود[۲].

در این مقاله، نانوذرات فریت روی با به روش لازم تحت تهیه کردن و به بررسی رفتار این کننده مورد بررسی قرار گرفته‌اند.

۱- مقدمه
در بین نانومواد، نانوذرات فریت‌ها دسته مهمی از مواد هستند که خواص الکتریکی، مغناطیسی و کاتالیستی گوناگونی دارند. نانوذرات فریت در زمینهٔ ریست پزشکی، مگنتولکتریک و حسگر عازی کازر پوی کنندهٔ فراوانی دارند. فریت مواد نیم‌رسانا با فرمول شیمیایی MFe2O4 هستند که کنندهٔ کاتیونی فازی دو طرفی
[۱] فریت روی (ZnFe2O4) می‌تواند استخراجی است که کاتیونهای Zn2+ در جایگاه‌های چهارچوب قرار داده شوند. در این روش از جمله مواد نیمرسانا هستند که از نظر شیمیایی و گرانبها پایدار بوده و گرایی مناسبی برای کاربردهایی از قبیل موارد نانوماتریک، کانالیستها، فوتوناتانسیما که تصوربرداری شده متناهی و کنگ داده است[۲] در کاربردهایی که به آنها اشاره کرده این نانوذرات یک پارامتر مهم است. اخیراً نانوذرات فریت روی به دلیل وابستگی خواص فیزیکی و شیمیایی به اندازه‌ای تازه در مقایسه با نانوذرات خود، بسیار مورد توجه محققان قرار گرفته‌اند[۲].

روش‌های مختلف مانند هیدروسول، هیدروترمال، خمک کانون انجام‌داده استخراج و تبدیل برای ساخت نانوذرات فریت روی وجود دارد. در بیشتر روش‌هایی که اشاره شده نازبانده مقدار زیادی مواد شیمیایی هستند و زمان واکنش تولید و داده واکنش باید بخواهد. به علاوه این واکنش‌ها مقدار مواد مذکور می‌تواند مکانیکی و موجب آغوش‌گذی ریزتی بیشتر می‌شود[۲].

در این مقاله، نانوذرات فریت روی با به روش لازم تحت تهیه کردن و به بررسی رفتار این کننده مورد بررسی قرار گرفته‌اند.

۱- مقدمه
در بین نانومواد، نانوذرات فریت‌ها دسته مهمی از مواد هستند که خواص الکتریکی، مغناطیسی و کاتالیستی گوناگونی دارند. نانوذرات فریت در زمینهٔ ریست پزشکی، مگنتولکتریک و حسگر عازی کازر پوی کنندهٔ فراوانی دارند. فریت مواد نیم‌رسانا با فرمول شیمیایی MFe2O4 هستند که کنندهٔ کاتیونی فازی دو طرفی
[۱] فریت روی (ZnFe2O4) می‌تواند استخراجی است که کاتیونهای Zn2+ در جایگاه‌های چهارچوب قرار داده شوند. در این روش از جمله مواد نیمرسانا هستند که از نظر شیمیایی و گرانبها پایدار بوده و گرایی مناسبی برای کاربردهایی از قبیل موارد نانوماتریک، کانالیستها، فوتوناتانسیما که تصوربرداری شده متناهی و کنگ داده است[۲] در کاربردهایی که به آنها اشاره کرده این نانوذرات یک پارامتر مهم است. اخیراً نانوذرات فریت روی به دلیل وابستگی خواص فیزیکی و شیمیایی به اندازه‌ای تازه در مقایسه با نانوذرات خود، بسیار مورد توجه محققان قرار گرفته‌اند[۲].
مقدمه
میشوهن میشوهن. هر یک از پیکها با یک بخش نویسنی مخاطب به ونی در شکل اول نقش دارد.

\begin{equation}
\Gamma = A_{1g} + E_g + 3F_{2g} + 2A_{2g} + 2E_u
\end{equation}

این رابطه برای سانسور را در بلبرنگی نوشتی شده است.

\begin{equation}
\frac{a}{d} = \sqrt{h^2 + k^2 + l^2}
\end{equation}

در این رابطه \(a\) نامه‌گر A، فاصله صفحات پراکنده (hkl) اندیس‌های مربوط به صفحات پراکنده هستند.

\begin{equation}
L = \frac{KA}{\beta \cos \theta}
\end{equation}

در این رابطه L اندازه بلبرنگی X اشتهای پیک اصلی (311) در نصف ارتفاع و θ را می‌بیند. نامه‌گر A در پراکنده است.

\begin{equation}
\text{شکل 1: الگوی پراش ابکس فیبره مویی}
\end{equation}

شکل 2: الگوی طیف‌سنجی FTIR نمونه فیبره مویی

با استفاده از الگوی فیکتوگرام گرو، نمایش با کاهش‌ناپذیر ساختار اسپینی روز متعلق به گروه فضایی به شکل رابطه (3) بایان می‌شود.

\begin{equation}
\text{شکل 3: بررسی طیف‌سنجی FTIR}
\end{equation}

بررسی طیف‌سنجی FTIR نمونه تهیه شده در شکل 2. فرمول FTIR نمونه به شکل 3 تهیه شده است. بررسی طیف‌سنجی FTIR نمونه به شکل 4 تهیه شده است.
در شکل ۵ نمودار مستقیم ۱⁄۲ و برای گاز غیرمستقیم ۲ در نظر گرفته شده است.

\[\text{به‌طور گسترده‌ای } (a \nu^m) = \frac{2}{m} \text{ سرویس مورد استفاده از روش برون‌باینی با مقطع محور } \nu \text{ تعیین گشته مقدار } m \text{ از شکل ۵ واضح است که مقدار } m \text{ ناگزای نانوذرات ریز } \text{ برای } \nu \text{ کلکترون ولت است. } \text{گاز نانوذرات از اثرات کوانتومی سبب } \text{ با اثرات سطحی ناشی می‌شود، به همین دلیل } m \text{ افزایشی با تغییر اندازه ذرات ارتباط دارد.}

شکل ۵: نمودار تخمین مقدار گاز نانوذرات ریز

۴- نتیجه‌گیری

نمودار پر شاش اشعه X ساختار استپنل مکسیمی فیروت روي را تأیید می‌کند. طیف سنتزی رامان و FTIR دهنده حضور مهدای اتیکی مربوط به گروه فضایی }

\[\text{یه } s \text{ هستند. گاف نانوذرات فیروت روي مربوط به رفتار حذفی } \text{گوانومری اینها است.}

مراجع