Investigation of optical behaviour of Zinc ferrite nanoparticles

Fariba Ahmadi, Ammar Mohajeran, Sajad Hamreh, Ahmad Yazdani

Department of Physics, Tarbiat Modares University, Tehran

Abstract- Because of rich applications, Spinel nanoferrites have attracted the attention of researchers in recent years. In this paper, we investigate structural and optical behaviour of Zinc ferrite nanoparticles with general formula of ZnFe$_2$O$_4$. We study Phase and crystalline structure with the help of X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. We calculate the absorbance wavelength and energy gap of Zinc ferrite nanoparticles from UV-Vis measurement.

Keywords: Energy gap, Optical behaviour, Self- combustion, Spinel, Zinc ferrite nanoparticles
1. مقدمه

در بین نانوذرات، نانوذرات فیت‌ها دسته مهمی از مواد هستند که خواص الکتریکی، مغناطیسی و کالرایزی و گیاه‌شناسی دارند. نانوذرات فیت‌ها در زمینه‌ی زیست پزشکی، مگنتوکریستال و همچنین لمینات و رایش‌های گیاهی و کاربردهای فراوانی دارند. فیت‌ها مواد نیم‌رسان با فرمول شیمیایی

\[\text{MFe}_2\text{O}_4 \]

است. [1]

قشر روی (ZnFe_2O_4) که شامل شیمیایی و کالرایزی می‌باشد، روبرویهای ایجادی‌یک جهتی دارد.

2. روش‌ساخت

2-1) مقدمه‌پذیری نیترات روی شی (Zn(NO_3)_2) و گلیایس را نمایندگی نیترات آهن (آهن) (Fe(NO_3)_2) و H_2O را ارائه می‌دهند. پس از انبساط نیترات، این‌ها در جدول ۱ وارد شده‌اند.

در تهیه این محلول نسبت بهینه گلیایس به نیترات را ۱:۴۴ در نظر گرفتیم.

جدول ۱. مقادیر ویژه مواد حل شونده در محلول

<table>
<thead>
<tr>
<th>محلول (برحسب گرم)</th>
<th>فونت</th>
<th>بیت</th>
<th>نیترات روی شی آهن</th>
<th>نیترات آهن آهن</th>
<th>گلیایس</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده</td>
<td></td>
<td></td>
<td>ویژه</td>
<td>ویژه</td>
<td>ماده</td>
</tr>
<tr>
<td>مواد</td>
<td></td>
<td></td>
<td>ویژه</td>
<td>ویژه</td>
<td>ماده</td>
</tr>
<tr>
<td>وزن (برحسب گرم)</td>
<td>۱/۷۲۹۵۲</td>
<td>۱/۱۶۱۴</td>
<td>۱/۷۲۸</td>
<td>۱/۷۲۹۵۲</td>
<td>۱/۱۶۱۴</td>
</tr>
</tbody>
</table>

محلول به دست آمده را به مدت ۲۰ دقیقه حرارت می‌دهد و آن‌ها تبخیرشود. بودار حاصل را در هاوان می‌سازند.

3. بحث و بررسی نتایج

3-1) بررسی نتایج ساختاری

مشخصه‌های نیترات از چهل ساده است. آن‌ها شیشه‌ای و آن‌ها به‌صورت مخلوطی در حالت فلزی ایکس (XRD) در بلوک‌ها توسط دستگاه پراش اشعه ایکس (XRD) در مقایسه ۲۰ بین ۳۰ تا ۴۰ درجه با نانوذرات به طول موج ۱۵۴۰ و ۱۳۱۰ میکرو نانوذرات دقت ترین است.

3-2) میزان ترکیب

فرایند خوداحترافی در مقایسه با روشن‌های دیگر تهیه نانوذرات فیت‌ها و روش آهنی به صورت ساده و از نظر مصرف انرژی و صرف زمان مصرف به صورت می‌باشد. در این روش مواد خروج مواد اولیه کننده می‌شود. به‌ترین محصولات خلوص زیادی دارند. در این روش سوخت، اکسیدکننده و دمای احتراف سه پارامتر مهم هستند.
اشعه X در شکل 1 نشان داده شده است حضور صفحات (400، 322، 511 و 440) در الگوی پراش نانوذرات فریت روي. بر تشکیل ساختار مکعبی اسپینلی با گروه فضایی Fd3m دلالت دارد.

![شکل 1: الگوی پراش اشعه ابستسی 1175](figure1.png)

شکل 2: الگوی طیف سنتی FTIR

با استفاده از آنالیزی فاکتور گروه، نماشگاه یافته‌ای تایپ در این طیف سنتی فریت نوع، تاکید می‌شود که در این فضایی، اماکنی آنالیز یافته‌ای می‌باشد.

$$\Gamma = A_{1g} + E_{g} + F_{1g} + 3F_{2g} + 2A_{2u} + 2E_{u}$$

$$\theta = \frac{4F_{1g} + 2F_{2g}}{A_{1g} + E_{g} + 3F_{2g}}$$

$$a = \sqrt{\frac{A_{1g} + E_{g} + 3F_{2g}}{4F_{1g} + 2F_{2g}}}$$

3- بررسی طیف رامان

طیف رامان نشان داده شده است. قطب‌کردن نتایج نشان دهنده سه سطح اصلی دارد. آنتان انتزاعی این طیف رامان نشان دهنده سه سطح اصلی دارد. آنتان انتزاعی این طیف رامان نشان می‌دهد که این فضایی شامل گروه‌های X و Y است.

$$F = \frac{1}{\sin\theta}$$

3- بررسی طیف سنتی FTIR

نتیجه طیف سنتی FTIR نشان می‌دهد که آلیکسی اابستسی در شکل 2 اورده شده است. پیوکشی این می‌رود در طیف رامان شک می‌شود.

$$\text{FTIR}$$

1175
طیف‌سنجی بیک وجود دارد. پیک مشاهده شده در اعداد موج بزرگتر از 600 cm^{-1} به دلیل قرارگیری اکسیژن در گروه AO_x است و مشخصه این ترین رشته F_{2y} هست. پیک مشاهده شده در اعداد موج کمتر از $488-497 \text{ cm}^{-1}$ (با α جایگا هست و برداشتی می‌باشد و مدهای BO_6 مرتب می‌باشد و AO_{4} می‌باشد).

شکل 3: طیف رمان فروی FTIR مشابه نتایج مربوط به نایس کاوشت‌خیز پیک در طیف فروی روى این طیف رمان نیز مشاهده شده است.

UV-Vis نمودار مربوط به طیف UV-Vis در شکل 4 آورده شده است. در این نمودار شدت ذنب نانو ذرات فروی مربوط به طول موج 1-232 نانومتر است. این پیک را می‌توان به آرسنی اکسیدی الکترونی متوازن $\alpha_d\alpha_d^+$ 3 بیون- های Fe$^{3+}$ نسبت داد.

شکل 4: نمودار طیف UV-Vis

گروه فروی γ نانو ذرات فروی با استفاده از رابطه 4 محاسبه می‌شود. در این رابطه α ضریب ذنب است.

$$\alpha h \nu = A(h \nu - E_g)^m$$

این پیک مقدار نایب $h \nu$, γ گروه فروی E_g, α, m نوازندگی نایب E_g, α, m نوازندگی نایب E_g, α, m نوازندگی

شکل 5: نمودار چندین اثرزی فروی در UV-Vis

- تصویر باینی‌گیری

- نمودار برای انتظار شده X ساختار استیل مکسی فروی روى را تأیید می‌کند. طیف سنجی رامان و FTIR داننده حضور ماده‌ای اپتیک مربوط به گروه فضایی $F_{2d}3m$ هستند. کاوش نواز نانو ذرات فروی مربوط به رفتار حذفی کاوشت می‌باشد.

مراجع