Investigation of optical behaviour of Zinc ferrite nanoparticles

Fariba Ahmadi, Ammar Mohajeran, Sajad Hamreh, Ahmad Yazdani

Department of physics, Tarbiatmodares university, Tehran

Abstract- Because of rich applications, Spinel nanoferrites have attracted the attention of researchers in recent years. In this paper, we investigate structural and optical behaviour of Zinc ferrite nanoparticles with general formula of ZnFe_2O_4. We study Phase and crystalline structure with the help of X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. We calculate the absorbance wavelength and energy gap of Zinc ferrite nanoparticles from UV-Vis measurement.

Keywords: Energy gap, Optical behaviour, Self- combustion, Spinel, Zinc ferrite nanoparticles
1- مقدمه

در بین نانومواد، نانوذرات فریتا دسته مهمی از مواد هستند که خواص الکتریکی، مغناطیسی و کاتالیستی می‌باشند. نانوذرات فریت در زمینه‌های زیست پزشکی، مگنتولکتریک و حسگرهای کازی کاربردهای فراوانی دارند. فریت نانومتریسنان با فرمول شیمیایی \(\text{MFe}_2\text{O}_4 \) هستند که \(\text{M} \) یک کاتیون فلزی دو طرفی \(\text{ZnFe}_2\text{O}_4 \) دارند. در گزارش‌های چهارگانه قرار دارد.

کاتیون‌های \(\text{Zn}^{2+} \) و \(\text{Fe}^{3+} \) از جایگاه‌های چهارگانه قرار دارند. فریت از گروه مواد نانومتریسنان هست که از نظر شیمیایی و کاتالیستی با پیامدهای دیگر بهره‌برداری از پیامدهایی از قبل می‌تواند متفاوت‌سازی با کاربردهایی از قبل می‌تواند متفاوت‌سازی و نگه داشته باشد. این روش در کاربردی به آن‌ها اشاره کرده است.

کاتیون‌های \(\text{Zn}^{2+} \) و \(\text{Fe}^{3+} \) از جایگاه‌های چهارگانه قرار دارند. فریت از گروه مواد نانومتریسنان هست که از نظر شیمیایی و کاتالیستی با پیامدهایی از قبل می‌تواند متفاوت‌سازی و نگه داشته باشد. این روش در کاربردی به آن‌ها اشاره کرده است.

روش‌های مختلفی از پذیرش بروز، هیدروترمال، هیدرولیتوس و و روش‌های مختلفی از پذیرش بروز، هیدرولیتوس و هیدرولیتوس و در ساخت مواد نانومتریسنان استفاده می‌شوند.

جدول 1: مقادیر وزن مواد حل شونده در محلول

<table>
<thead>
<tr>
<th>محلول</th>
<th>وزن (بر اساس گرم)</th>
<th>ماده</th>
</tr>
</thead>
<tbody>
<tr>
<td>pests</td>
<td>15953</td>
<td>نیترات روی شیائ</td>
</tr>
<tr>
<td>pests</td>
<td>1/16</td>
<td>نیترات آهن</td>
</tr>
<tr>
<td>pests</td>
<td>1/25</td>
<td>گلاسین</td>
</tr>
</tbody>
</table>

محلول به دست آمده را به مدت 30 دقیقه حرارت می‌دهم، آن را تبخیر می‌دهم. بوی حاصل را به هوا منتقل می‌کنم.

2- جزئیات آزمایش

2-1- مواد و وسایل

فرایند خواداحتراقی در مقایسه با روش‌های دیگر تهیه نانوذرات فریت، روشی سریع، ساده و از نظر مصرف انرژی و صرف زمان مفروض به صرفه می‌باشد. دمای بالا در این روش موجب خروج مواد نانومتریسنان می‌شود. بنابراین محصولات خلخلیتی دارند. در این روش مواد خریداری می‌شوند، اکسیدکننده و دمای اختراق به پارامتر مهمی
پیستیمین کنفرانس اپتیک و فوتونیک ایران به همراه شش مهرمیل کنفرانس مهندسی و فناوری فوتونیک ایران

مشاهده میشود. هر یک از پیک‌ها با یک مدل نوسانی مناظر بوده و شانده‌های بروزده احتمالی موجود در شیشه است. بروزده‌های مناظر با اعداد موج 1175 و به ترتیب به مدل‌های نوسانی مناظر بوده و شانده‌های بروزده احتمالی موجود در شیشه Fe$^{3+}$ مربوط می‌شوند. اعداد موج 1410 نشان دهنده فرکانس نوسانی پویان فلزی که در جایگاهی که در هشت ویژه Fe$^{3+}$ مربوط می‌شود. در تاریخ 311 در حاصل می‌شود نشان دهنده، تشکیل ساختار مکعی اسبیتی با گروه قضایی Fd3m دالات دارد.

شکل 1: الگوی پرسش ابعاد ابکس فریت روی

ساختار اسبیتی فریت روی مرتبط به گروه قضایی F_{d}^{2} به شکل رابطه (3) بیان می‌شود.

$$\Gamma = A_{1g} + E_{g} + 3F_{2g} + 2A_{2g} + 2E_{u}$$

این رابطه براساس ناسور رامان در بلورسانی نوسانی شده است. در این طرف، نهایاً هر اصلی اول در پارس لایه عدد موج 300 تا 4000 برمی‌گردد و مشاهده شده است.

- بررسی طیف‌رمان

طیف رمان فریت روی در شکل 7 نشان داده شده است. وقتی کردن نتایج ناشده سه مدل اصلی A_{1g}، E_{g} و F_{2g} انتخاب می‌شود. این مدل با طیف ثانیه انتخاب می‌شود.

$$a = d \sqrt{h^{2} + k^{2} + l^{2}}$$

در این رابطه a تابث شبکه، d فاصله صفحات براک و hkl اندرسیات بلبرمربوط به صفحات براک. هستند. مقدار تابث شبکه $\gamma^{2} \rightarrow 44$ انگستروم به دست می‌آید.

- بررسی طیف‌سنگی تبادل فوریه

نتیجه طیف‌سنگی FTIR نمونه ثانیه شده در شکل 1 نشان داده شده است. پیک‌ها در اعداد موج $3406/59$، $324/70$ و $367/42$ در حاصل می‌شود.
طیف فیک بیک وجود دارد. بیک مشاهده نشده در اعداد موج بیژنگی از ۶۰۰ cm\(^{-1}\) به بالا قرار می‌گیرد. اکسیژن در جایگاه‌های آ گرافیتی چهارگناوه A0 از جایگاه‌های چهارگناوه F(طیف‌گیری اکسیژن) و مشخصه ایمن نوسانی F و E مشاهده شده است.

منابع: