Investigation of optical behaviour of Zinc ferrite nanoparticles

Fariba Ahmadi, Ammar Mohajeran, Sajad Hamreh, Ahmad Yazdani

Department of physics, Tarbiatmodares university, Tehran

Abstract- Because of rich applications, Spinel nanoferrites have attracted the attention of researchers in recent years. In this paper, we investigate structural and optical behaviour of Zinc ferrite nanoparticles with general formula of ZnFe$_2$O$_4$. We study Phase and crystalline structure with the help of X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. We calculate the absorbance wavelength and energy gap of Zinc ferrite nanoparticles from UV-Vis measurement.

Keywords: Energy gap, Optical behaviour, Self- combustion, Spinel, Zinc ferrite nanoparticles
هجسته. فرایند خوداحترازی، واکنشی گرمازا به صورت فرایند اکسف و احیا بین سوخت و اکسید کننده است. بنابراین واکنش خود به خودی انجام می‌گیرد و نیز گرمازا هوش و واکنش منجر به بالا رفتن دمای سیستم می‌شود. در نتیجه این فرایند "سنتر دما با بالای خود" نامیده می‌شود.

ماده اکسید کننده (مکمل انریت‌فیلی)، به (M(NO₃)₃)، [2] (Zn(NO₃)₂]₆H₂O، [1] (Fe(NO₃)₃)₉H₂O و گلاسیس را مطابق مقدار به دست آمده از استوکومتری، وزن کرده، سپس در برای زن یک فاز آب دیوهی به آنها افزوده و محلول را به تهیه می‌کنیم. مقادیر به دست آمده از استوکومتری در جدول 1 ورود شدهاند. در تهیه این محلول نسبت به هر گلاسیس به نتیجه را 1/440 در نظر گرفتیم.

جدول 1 مقادیر وزنی مواد حل شونده در محلول

<table>
<thead>
<tr>
<th>ماده</th>
<th>وزن (برحسب گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیترات روی شایع آلی</td>
<td>59492</td>
</tr>
<tr>
<td>نیترات آهن (نیترات)</td>
<td>1/616</td>
</tr>
<tr>
<td>نیترات آهن (نیترات)</td>
<td>1/528</td>
</tr>
<tr>
<td>گلاسیس</td>
<td></td>
</tr>
</tbody>
</table>

محلول به دست آمده را به مدت ۳۰ دقیقه حرارت می‌دهیم. ابتدا تیغه‌ها بیشتر می‌شود، پس یک حلال را در هوا می‌ساییم.

1- مقدمه

در بین نانو مواد، نانوذرات فریت‌ها دسته مهمی از مواد هستند که خواص الکتریکی، مغناطیسی و کالیوستیکی گیاهانی دارند. نانوذرات فریت در زمین‌های زیست پزشکی، مگنتولوژی و حس‌های ثانی قاربردهای خاصی دارند. فریت مواد نیمه‌رسانا با فرمول شیمیایی MFe₂O₄ هستند که در (۱). فریت روی ZnFe₂O₄ (ZnFe₂O₄) که ساختار آلبینی است. که کاتایوکسی ۵+ (ZnFe₂O₄) در چاپگاههای تاریخی قرار دارد.

2- روش ساخت

مقداری نیترات روی شایع آلی (Zn(NO₃)₂]₆H₂O و گلاسیس را مطابق مقدار به دست آمده از استوکومتری، وزن کرده و سپس در برای زن یک فاز آب دیوهی به آنها افزوده و محلول را به تهیه می‌کنیم. مقادیر به دست آمده از استوکومتری در جدول 1 ورود شدهاند. در تهیه این محلول نسبت به هر گلاسیس به نتیجه را 1/440 در نظر گرفتیم.

3- جزئیات آزمایش

۱۲- مواد و مراحل

فرایند خوداحترازی در مقایسه با روش‌های دیگر تهیه نانوذرات فریت روی روی روش سریع، ساده و از نظر مصرف انرژی و صرف مصرف الکتریکی به صرفه می‌باشد. دمای بالا در این روش موجب خروج مواد نانوزده کننده می‌شود، بنابراین محدوده خلوص زیادی دارند. در این روش سوخت، اکسیدکننده و دمای اختراق سه پارامتر مهم

۱۱۷۴
مشاهده می‌شود. هر یک از پیک‌ها با یک ماده نوسانی متناظر بوده و دهنده پیوستگی موجود در شبکه است. پیوستگی متناظر با اعداد موج 2300 و 1410 cm⁻¹ به ترتیب به ماده‌ی نوواسی فیل‌های Fe⁺³ در جایگاه‌های چپ و چپ و چپ مربوط می‌شود. اعداد موج 1410 cm⁻¹ نشان‌دهنده فرکانس نوواسی یون فلزی دو طرفی در جایگاه هشت و چهار است. مدت نوسانی شبکه نیز با عدد موج 554/21 cm⁻¹ مطابقت دارد.

شکل 1: الگوی پراش اشعه ایکس فریت روي

مدله‌ی ایده‌آل نشان دهنده یک فریت روي در اُن‌ها از آنتی‌های فاکتور گروه، نمایش کاهش بازی در ساختار اسپینلی فریت روي مربوط به گروه فضایی به شکل رابطه (3) بیان می‌شود.

\[
\Gamma = A_{1g} + E_g + F_{1g} + 3F_{2g} + 2A_{2g} + 2E_u
\]

\[\Theta_{1g} \otimes 2F_{2u} \]

این رابطه براساس ناسور رامان در بلورشانسی نوشتند شده است. در این طرف، نیاپ مدل اصلی مرتبه اول برای این رابطه عدد موج‌های 2300 و 4300 بر ساعت متر مشاهده شده است.

3- بررسی طفیس‌سنجی

طفیس‌سنجی رامان فریت روند در شکل 3 نشان داده شده است. وقتی کردن نتایج نشان دهنده سه مدل اصلی (A) است. A₁g، F₂g و E₁g مطالب رابطه 3 انزالی می‌رود سه مدل A، شش و E ده مدل مشاهده داشته باشیم؛ بنیگی در مجموع 18 مدل نویسی در سیستم وجود داشته باشد. با توجه به این نکته که برایای هر دره 27 یکی از این سیستم تعیین می‌شود اندازه‌ی می‌رود در طفیس‌سنجی فریت مشاهده شود. در این

شکل 2: طفیس‌سنجی FTIR

نااحیت پراش اشعه ایکس فریت روي

ماکسیم شد در رازهای A (342/870) درجه مشاهده می‌شود که مشاهده می‌شود X شوتهای بلورکهای فریت روي از الگوی پراش اشعه مشخصات مربوط به پیک اصلی (311) و توسیع ماده‌ی که معادله شماره 4 می‌شود (1) ماسبه‌ی و برای با 20 نانومتره دست آمد.

\[
L = \frac{KA}{\beta \cos \theta}
\]

در این رابطه L اندشه بلورکهای اشعه X اشتعال پیک اصلی (311) در نصف ارتفاع و \(\theta \) رازهای پراش پراش ایکس با 0 در نظر گرفته شده است.

ناحیت شکل ب منتهی از معادله (2) به دست می‌آید (6):

\[
a = d \sqrt{h^2 + k^2 + l^2}
\]

در این رابطه a ناحیت پراش d، فاصله صفحات براک و اندسه‌های مرتبه چهار مرمی با صفحات براک هستند (hkl) مقدار ناحیت شکل ب/4 آن‌گونه است که دست آمد.

نتیجه طفیس‌سنجی FTIR نمونه وده شده در شکل 2 اورده شده است. پیک‌ها در اعداد موج 344/340/303/61/59 و 1716/15/14/10/8/58 این
طیف چهار بیک وجود دارد. بیک مشاهده شده در اعداد موج بزرگتر از 600 cm^{-1} به دلیل قرارگیری اکسیژن در گروه‌های Fe_3O_4 و مشخصه این نوسانات Fe_3O_4 هست. بیک مشاهده شده در اعداد موج کمتر (184-649 \text{ cm}^{-1}) با گروه‌های هست و مشخصه BO_6 مرتبط می‌باشد و مدهای نوسانی A_{1g} و E_{2g} را نشان می‌دهد.

![شکل 3: طیف رامان فریت روي FTIR](image)

مشابه ترتیب مربوط به نامی کاهش ذهبن در طیف فریت روی در طیف رامان نیز مشاهده شده است.

UV-Vis 4-3 بررسی طیف UV-Vis

نمونه مربوط به طیف UV-Vis در شکل 4 آورده شده است. در این نمونه مربوط به طول موج 347-497 نانومتر است. این بیک را می‌توان به ارتباط‌ها بین مکانیکی متقاوت $\{32 \g^{+}\}_{2d}$ با Fe$^{3+}$ نسبت داد.

![شکل 4: انگلی طیف UV-Vis فریت روی](image)

Mراجع

