در هم تنیزدی در برهم کنش غیرخطی دو اتم دوتروازی با یک میدان تکمید در حضور انرژی کر و استارک با گذارهای چندفوتونی

حیدرضا باقی‌دایی۱، محمد کاظمی توسلی۲ و عباس بهجت۲،

۱گروه انتیو و مولکول‌های ذراتی، دانشگاه فیزیک، دانشگاه برز، رد.
۲گروه پژوهشی فوتونیک، مرکز تحقیقات مهندسی، دانشگاه برز، رد.
۳گروه پژوهشی فوتونیک، مرکز تحقیقات مهندسی، دانشگاه برز، رد.

چکیده- در این مقاله برهم کنش دو اتم دوتروازی با یک میدان تکمید غیرخطی در حضور انرژی کر و استارک را با لحاظ کردن گذارهای چندفوتونی در یک رژیم غیرخطی در نظر می‌گیریم. پس از به‌دلیل این‌گونه بازی‌های جدید تجربی برای سامانه اتم-میدان و انتخاب یک تابع غیرخطی معین، انرژی‌خطی را به عنوان میزان درهم‌تنیدگی بین اتم و میدان مورد بررسی قرار می‌دهیم. در این پژوهش، یک تابع غیرخطی ویژه را به عنوان تحقیق فیزیکی این ساختار در نظر می‌گیریم.

کلید‌واژه‌های اصلی: کر، انرژی خطی، درهم‌تنیدگی کواتومی، اثر استارک.

Entanglement in the Nonlinear Interaction of Two Two-Level Atoms with a Single-Mode Cavity Field in the Presence of Stark Effect and Kerr Medium with Multi-Photon Process

Hamid Reza Baghshahi۱,3, Mohammad Kazem Tavassoly۱,2 and Abbas Behjat۱,2

۱Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd
۲Photonics Research Group, Engineering Research Center, Yazd University, Yazd
۳Department of Physics, Vali-e-Asr University of Rafsanjan, Rafsanjan

Abstract- In this paper we consider the interaction between two two-level atoms with a nonlinear single-mode cavity field in the presence of the Stark effect and Kerr medium by considering multi-photon processes in the nonlinear regime. After obtaining the explicit form of the atom-field wave function and choosing a particular nonlinearity function, linear entropy as a measure of atom-field entanglement has been investigated. As a physical realization, we examined the approach by considering a particular nonlinearity function.

Keywords: Kerr medium, Linear entropy, Quantum entanglement, Stark shift.
1- مقدمه

یکی از ویژگی‌های کاملاً غیرکلاسیکی برخی از سامانه‌های کوانتمی می‌باشد. این ویژگی کوانتمی، تبدیل‌هایی در نظر گرفته شده است که کلیه اطلاعات کوانتمی، احتمالات کوانتمی، رزم‌گیری کوانتمی و ... اینجا کد [11]. یکی از روش‌های ایجاد سامانه‌های کوانتمی در هورن، فراهم آوردند برهم‌کنش اتم و میدان ایجاد سامانه کوانتمی کریم کاملاً کلاسیک نشد. در کار ثابت کردن این داده داده شده است. یکی از مدل‌های میکرو دنیای زبانی‌های دیگر است. در این مقاله برهم‌کنش دو اتم دو بارهای برهم‌کنش خیبری با گذارهای آیدونه در حضور اثرات کر و استارک در یک رزیم غیرخطی (غیرخطی‌شکل یافته) (f) را در نظر گرفتند و با انتخاب یک تابع خاص بررسی خیبری را به عنوان معیار درهم‌تبیینگی بین اتم و میدان مورد بررسی قرار می‌دهیم. همچنین اثرهای کر و استارک برای نمونه‌پذیری و جفت‌شدنی‌نیتی با استفاده را بر میزان درهم‌تبیینگی مورد مطالعه قرار می‌دهیم.

2- سامانه فیزیکی و هاملتونی آن

همالتونی برهمکنش اتم دو بارهای پیکسل با یک میدان تکمیل غیرخطی با گذارهای آیدونه در حضور اثرات کر و استارک در یک رزیم غیرخطی به شکل زیر خواهد بود:

\[H = \nu \hat{A}^\dagger \hat{A} + \sum_{j=1,2} \frac{\alpha_j}{2} \hat{\sigma}^{(j)}_z + \chi \hat{A}^\dagger^2 \hat{A}^2 \]
\[+ \hat{A}^\dagger \hat{A} \sum_{j=1,2} \left(\beta_1 \hat{\sigma}^{(j)}_z \hat{\sigma}^{(j)}_x + \beta_2 \hat{\sigma}^{(j)}_+ \hat{\sigma}^{(j)}_- \right) \]
\[+ \alpha \sum_{j=1,2} \left(\hat{\sigma}^{(j)}_z A^\dagger A + \hat{\sigma}^{(j)}_- A + \hat{\sigma}^{(j)}_+ A^\dagger \right) \]

که در آن نمادهای زیر اختیار شده است:

\[\gamma_1(n) = \Delta + \chi \frac{n(n-1)}{2} \frac{e^{-2n}}{(n-1)} \]
\[\gamma_2(n) = \chi \frac{n(n+2k)}{2} \frac{e^{-(n+2k)-1}}{(n+2k-1)} \]
\[\gamma_3(n) = \Delta + \chi \frac{n(n+4k)}{2} \frac{e^{-(n+4k)-1}}{(n+4k-1)} \]
\[\gamma_4(n) = \frac{\alpha_n}{\sqrt{n!}} \exp \left(-\frac{|\nu|^2}{2} \right) \]

حالات اولیه میدان را حالت همود و حالت اولیه اتم‌ها را برهم‌کنشی از حالت‌هایی که در آن دو اتم در حالت پایه (\(\{|0\rangle \rangle \}) یا با هر دو اتم در حالت برانگیخته (\(\{|0\rangle \rangle \}) باشد در نظر می‌گیریم:

\[v_{22} = \triangle \frac{\alpha_n}{\sqrt{n!}} \exp \left(-\frac{|\nu|^2}{2} \right) \]
3- در همین‌گذی

از بین معاونت‌های ملاقات اندازه‌گیری درجه درهم‌تبدیلی‌گر درجات محاسبه درهم‌تبدیلی‌گر در اندازه‌گیری دیده‌شده در هر لحظه از زمان به صورت \(\hat{\rho}(t) = \Psi(t)\Psi^\dagger(t) \) به‌دست می‌آید. با در نظر گرفتن روی مؤلفه‌های میدان، ماتریس چگالی کاهش‌یافته انرژی به شکل زیر خواهد بود:

\[
\hat{\rho}_{\text{atom}}(t) = \begin{pmatrix}
\rho_{11}(t) & \rho_{12}(t) & \rho_{13}(t) & \rho_{14}(t) \\
\rho_{21}(t) & \rho_{22}(t) & \rho_{23}(t) & \rho_{24}(t) \\
\rho_{31}(t) & \rho_{32}(t) & \rho_{33}(t) & \rho_{34}(t) \\
\rho_{41}(t) & \rho_{42}(t) & \rho_{43}(t) & \rho_{44}(t)
\end{pmatrix}
\]

که در آن

\[
\rho_{11}(t) = \sum_{n=0}^{\infty} |q_n|^2 |\Delta_n|^2, \quad \rho_{12}(t) = \sum_{n=0}^{\infty} |q_n|^2 [B_{n+2k}(t)]^2
\]

با استفاده از عناصر ماتریس با انتربیا خلی برای سامانه مورد نظر به صورت زیر به‌دست می‌آید:

\[
S(t) = 1 - [\rho_{11}(t)]^2 + (\rho_{22}(t))^2 + (\rho_{33}(t))^2 + 4(\rho_{12}(t))^2 + 4(\rho_{23}(t))^2 + 2(\rho_{44}(t))^2
\]

با استفاده از انتربیا ملبوده در درهم‌تبدیلی‌گر به سامانه مورد نظر به صورت زیر به‌دست می‌آید:

\[
\Delta (\theta) = \sum_{n=0}^{\infty} \frac{a_{kn}}{n + 1} \cos\frac{\theta}{2} [n + 1, e, e] + \sin\frac{\theta}{2} [n + 4k, g, g]
\]

در صورتی که \(\theta = \theta_0 \) باشد حالت اولیه هر دو اتم حالت برنگرفته، در صورتی که \(\theta = \theta_1 \) باشد حالت اولیه هر دو اتم حالت بایشی دارد که درجه به‌بینی از هر دو حالت را نتیجه می‌دهد.

با استفاده از همین‌گذی (2)، تابع دوم (3) و حل معادله شرودینگر، معادلات زیر برای ضرایب بسط تابع دوم به صورت زیر به‌دست می‌آید:

\[
\frac{dA_n}{dt} = 2FB_n e^{-i\eta t}
\]

\[
\frac{dB_{n+2k}}{dt} = FA_n e^{i\eta t} + GC_{n+4k} e^{-i\eta t}
\]

\[
\frac{dC_{n+4k}}{dt} = 2GB_{n+2k} e^{i\eta t}
\]

\[
F = \left[\frac{f(n+2k)!}{[f(n+4k)!]} \right]^{1/2}, \quad G = \left[\frac{f(n+4k)!}{[f(n+2k)!]} \right]^{1/2}
\]

\[
\gamma_2(n) - \gamma_1(n) = \eta, \quad \gamma_3(n) - \gamma_2(n) = \zeta
\]

با حل معادلات دیفرانسیل جفت‌شنده (5)، با استفاده که در آن

\[
A_n(t) = \frac{1}{2F} \sum_{m=1}^{3} \Omega_m \mu_m^2 - \zeta \mu_m - 2\zeta^2 \}
\]

\[
B_{n+2k}(t) = -\frac{3}{2F} \sum_{m=1}^{3} \Omega_m \mu_m \exp[i(\mu_m - \zeta)t]
\]

\[
C_{n+4k}(t) = \sum_{m=1}^{3} \Omega_m \mu_m \exp[i(\mu_m)t]
\]

در روابط باز قرار داده‌های زیر را ایجاد می‌کنیم:

\[
\mu_m = -x_1 + \frac{2}{3} (\chi_1^2 - 3\chi_2^2) \cos(\varphi + \frac{2\pi(m-1)}{3})
\]

\[
\varphi = \frac{1}{3} \cos^{-1}\left[\frac{9x_1x_2 - 2x_1^3 - 27x_1}{(x_1^2 - 3x_2^2)^{1.5}} \right]
\]

\[
x_1 = -\eta - 2\zeta, \quad x_2 = \zeta(\varphi + \eta) - 2\zeta^2 - 2\zeta^2
\]

\[
x_3 = 2\zeta^2(\varphi + \zeta), \quad \Omega_m = \frac{2F + \mu_m \mu_n \sin(\varphi/2)}{m_q m_r
\]

\[
F = F \cos\frac{\theta}{2} + G \sin\frac{\theta}{2}
\]
نامیزایی و جفت‌شدنگی وابسته به شدت را بر روی آن مورد بررسی قرار داد.

۱۲- بحث و نتیجه‌گیری

نمونه‌های (۱) تا (۴) تغییرات زمانی آنتروپی خنثی (درهمتین‌گی) را برای حالتی که اتم‌ها در ابتدا در حالت برانگیخته و میدان در حالت هموس باشد نشان می‌دهند. نمونه (۴) با فرض صفر بودن پارامتر نامیزایی، در غیاب آنتروپی کر و استارک و برای گذارهای دو فوتونی رسم شده است. همان‌طور که مشخص است در این حالت آنتروپی سریعاً به نقطه بیشینه رسیده و بعد از آن یک رفتار نامنظم دارد. صرف‌نظر از برخی از مزایای مساب کوتاه، در اکثر زمان‌ها درهمتین‌گی در حوالی بیشینه قرار دارد.

![شکل ۱ تغییرات زمانی آنتروپی خنثی برای.(۴)](image1)

در شکل (۴) تأثیر استارک در غیاب آنتروپی بررسی شده است. با توجه به این شکل، اثر استارک تأثیر مثبت در میزان درهمتین‌گی بین دو اتم و میدان دارد. زیرا در حضور اثر، آنتروپی بین نقاط بیشینه و کم‌بیشینه با دامنه محدودتری نوسان می‌کند. در بررسی همواره درهمتین‌گی قابل ملاحظه‌ای بین دو اتم و میدان وجود دارد. بر اساس محاسبات انجام شده که در اینجا آورده شد، در صورتی که آنتروپی کر، استارک و پارامتر نامیزایی را به‌طور همزمان بررسی نماییم، به این نتیجه می‌رسیم که اثر کاهشند میزان آنتروپی اثر غالب است.

مراجع: