Squeezing and Quantum Statistics in the Nonlinear Interaction of two \(\Xi \) – Type Three-Level Atoms with Single-Mode Cavity Field

HamidReza Baghshahi\(^{1,3}\), Mohammad Kazem Tavassoly\(^{1,2}\) and Abbas Behjat\(^{1,2}\)

\(^{1}\)Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd

\(^{2}\)Photonics Research Group, Engineering Research Center, Yazd University, Yazd

\(^{3}\)Department of Physics, Vali-e-Asr University of Rafsanjan, Rafsanjan

Abstract-In this paper we consider the nonlinear interaction between two \(\Xi \)-type three–level atoms with a single-mode cavity field. We demonstrate that the outlined problem has still analytical solution. Indeed, after obtaining the explicit form of the atom-field wave function by using the Laplace transform technique, squeezing and quantum statistics as some nonclassical features of the system are clearly established. The effect of intensity-dependent coupling on the temporal behavior of the above mentioned criteria are also discussed.

Keywords: Jaynes-Cummings model, Laplace transform, Intensity-dependent coupling.
1- مقدمه

هرچند برهمکنش یک آتم سنتزی نوع با میدان دومدی در حضور محفظه کر و با یک لدزدگی، باشته به شدت [3] مورد بررسی قرار گرفته است.

برهمکنش را به صورت زیر خواهد بود

\[
\hat{H}_0 = \Omega \hat{a} + \sum_{j=A,B} (\epsilon_1 \hat{a}^\dagger \hat{a}^j + \epsilon_2 \hat{a}^j \hat{a}^\dagger) + \omega_2 [2\hat{a}^j \hat{a}^\dagger 2\hat{a}^j] + \omega_3 [3\hat{a}^j \hat{a}^\dagger 3\hat{a}^j]
\]

(1)

\[
\hat{H}_1 = \sum_{j=A,B} \left[g(\hat{a}^j \hat{a}^\dagger \hat{a}^j + \hat{a}^\dagger \hat{a}^j) e^{-i\Delta_f} + \hat{a}^\dagger \hat{a}^j + \hat{a}^j \hat{a}^\dagger e^{+i\Delta_f} \right]
\]

(2)

\[
\psi(\theta) = \sum_{n=0}^\infty [C_1(n) \hat{a}^\dagger \hat{a}^j + C_2(n) \hat{a}^\dagger \hat{a}^j + C_3(n) \hat{a}^\dagger \hat{a}^j + C_4(n) \hat{a}^\dagger \hat{a}^j + C_5(n) \hat{a}^\dagger \hat{a}^j + C_6(n) \hat{a}^\dagger \hat{a}^j + C_7(n) \hat{a}^\dagger \hat{a}^j + C_8(n) \hat{a}^\dagger \hat{a}^j]
\]

(3)

\[
\Delta_f = \omega - \omega - \frac{\Omega}{2} \Delta
\]

(4)

\[
\Delta = \Delta_1 + \Delta_2
\]

(5)

\[
\end{align*}
\]

2- محاسبه تابع موج سامانه

همدموس در نظر می‌گیرید به نموداری این مدل مانند شکل 1 تابع موج سانوسی نوگ‌سانتزی و با ترزا برگضویه (1) بازگشته (1) و ترزا بانی (2) شکل 1 با یک میدان تکمیکه باجتپشتگی واپسه به حدث را به صورت \(\hat{H} = \hat{H}_0 + \hat{H}_1 \) به طوری که
\[C(n+2) = C(n+0) \left[(\cos(\beta) - \cos(\alpha)) \cos(\beta) - \cos(\alpha) \right] \]
\[C(n+1) = C(n+1) \left[(\cos(\beta) - \cos(\alpha)) \cos(\beta) + \cos(\alpha) \right] \]
\[C(n+3) = C(n+3) \left[(\cos(\beta) - \cos(\alpha)) \cos(\beta) - \sin(\alpha) \right] \]
\[C(n+4) = C(n+4) \left[(\cos(\beta) - \cos(\alpha)) \cos(\beta) + \sin(\alpha) \right] \]

\[\psi(0) = \sum_{n=0}^{\infty} C(n) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi(1) = \sum_{n=0}^{\infty} C(n+1) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi(2) = \sum_{n=0}^{\infty} C(n+2) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi(3) = \sum_{n=0}^{\infty} C(n+3) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi(4) = \sum_{n=0}^{\infty} C(n+4) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi(5) = \sum_{n=0}^{\infty} C(n+5) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi(6) = \sum_{n=0}^{\infty} C(n+6) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi(x) = e^{-\frac{x^2}{2}} \sum_{n=0}^{\infty} C(n) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi'(x) = -x e^{-\frac{x^2}{2}} \sum_{n=0}^{\infty} C(n+1) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi''(x) = x^2 e^{-\frac{x^2}{2}} \sum_{n=0}^{\infty} C(n+2) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi'''(x) = -2x e^{-\frac{x^2}{2}} \sum_{n=0}^{\infty} C(n+3) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi''''(x) = 4x^2 e^{-\frac{x^2}{2}} \sum_{n=0}^{\infty} C(n+4) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi'''''(x) = -8x e^{-\frac{x^2}{2}} \sum_{n=0}^{\infty} C(n+5) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]

\[\psi''''''(x) = 12x^2 e^{-\frac{x^2}{2}} \sum_{n=0}^{\infty} C(n+6) \left(\frac{\sin(\alpha)}{\cos(\beta)} \right)^n \]
3 تغییرات زمانی یک پارامتر مندل را با پارامترهای مشابه 3 تغییرات را می‌دهد. همان‌گونه که ملاحظه می‌شود پارامتر مندل بین نقاط صفی و مثبت تغییر می‌کند که این نشان‌دهنده قواعد آزمایشگاهی و اپروپرونی برای ایجاد توزیع فوتون‌ها در زمانی متفاوت است. میانگین تعداد فوتون‌های میدانی، یکی دیگر از پارامترهای این که می‌تواند توزیع آماری فوتون‌های میدان را نشان دهد.

2 آمار کوانتومی:

به منظور بررسی آمار کوانتومی میدانی دو پارامتر را مورد بحث قرار می‌دهیم: یکی پارامتر مندل [17] و دیگری میانگین تعداد فوتون‌های میدانی [18]. پارامتر مندل برای میدان‌های ناشی تکمیل به صورت زیر تعیین می‌شود:

\[Q = \frac{\langle \hat{n}^2 \rangle - \langle \hat{n} \rangle^2}{\langle \hat{n} \rangle} - 1 \]

به ترتیب مناظر با توزیع جوی و پاراسوئنی برای فوتون‌های میدان هستند. آمار پارامتریونی، یکی از ویژگی‌های غیرکلاسیکی سامانه است.