Design and fabrication of a laser tide gauge system

M.Zamani, M.Sarshogh, A.Khalili and M.Rashidi

Optic & Laser Research Center, Malek-Ashtar University of Technology, Shahin Shahr, Isfahan

Abstract- In this paper design and fabrication of a laser tide gauge system based on range finder for short distance based on triangulation method is described. This device can measure between 1-10 meters range with 10cm resolution. This system uses a 630nm laser diode as a source and a one dimensional CCD array as a detector. This system is semi-industrially fabricated and passed several tests. The experimental results are represented.

Keywords: CCD Array, Laser, Range finder, Triangulation method.
1- مقدمه

اندازه گیری میزان جذر و مد آب دریا در محاسبات نشته برداری از اهمیت بسیاری برخوردار است. تا کنون روش‌هایی ایجادگری مختلف برای این مورد استفاده قرار گرفته است. این روش‌ها از حسگر‌های پیرو الکتریکی یکی از مرسوم‌ترین روش‌های دائم است. اما برخی از این حسگرها حساس به انر شکن و در این دادا برای مدت زمان طولانی است. اطرافی این حسگر به دلیل چگالی حجم آب مورد استفاده گیرد تا این است از دیگر عناصر اجزای گیردی لزیری می‌توان به دقت بالایی این روش اشاره کرد. که در اکثر مواقع این کپی نسبتاً گران قیمت در اثر برخورد با یک شی خارجی پاره شده است. سامانه لیزری ساخته شده به عنوان گیرنده این روش نسبت به روشن‌های مرسوم دیگر از اهمیت ویژه برخوردار است. از دیگر مراحل اجزاء کربنی لزیری می‌توان به دقت بالایی این روش اشاره کرد. از جمله روشن‌های فاصله‌بایی که برای قوانین کامپوزد استفاده می‌شده، روشن‌های مطلوبی است. این فاصله‌بایی به وسیله گسترده‌ای در منابع نظر نفت و گاز فلوید و کشتن سازی و ... کاربرد دارد.

2- زمینه نظری:

اساس عملکرد فاصله‌پیشی و روشن مطلوبی مطلق شکل (1) است.

شکل (1): اساس عملکرد پژوهش مطلوبی

3- 1- بخش فرستنده:

این بخش از یک لیزر دیود 1000 میلی‌وات با طول موج 635 nm به همراه یک ترموالکترونیک کولر جهت خنک سازی لیزر دیود و مجموعه مدار‌های مرتبط به درایو لیزر دیود و مدار کنترل دمای لیزر دیود تشکیل یافت.

شکل (2): بلوک دیاگرام فاصله‌پیشی و روشن مطلوبی

در این طرح از یک حسگر NTC به عنوان حسگر دما استفاده شده است. شماین کارتی مدار لیزر دیود در شکل (3) نشان داده شده است.
بسیاری از سیستم‌های الکترونیک و فوتونیک ایران به همراه ششمین کنفرانس مهندسی و فناوری فوتونیک ایران

شکل (۳): مدار راه انتقال آرایه خطي

شکل (۴): شماتیک مدار راه انتقال آرایه خطي

شکل (۵): مدار راه انتقال آرایه خطي

شکل (۶): شماتیک مدار پردازش

۳- واحدهای وکنترل

در قسمت پردازش سیگنال توسعه یک تراشه میکروکنترلر ATmega16 عملیات محاسبه قابلیت و نمایش نتیجه بر روی نمایشگر LCD انجام شده است.

شکل (۷): نمایی از قابلیت یاب که به صورت نیمه صعبتی ساخته شده است. شاهد این سامانه مورد آزمایش قرار گرفته و صحت عملکرد آن مورد تایید واقع شده است.

۴- آزمایشات و نتایج تجربی:

نتایج اندکه گیری میزان جری و آمپ قدی در یک محفظه تست مجازی مطلوب جدول (۱) با تغییر سطح آب نسبت
به سامانه‌ای فاضلاب یک دستگاهی هستی که برای اندازه‌گیری فاصله و در یک سیستم کالیبراسیون دارای صفحات می‌باشد که از این دستگاهی به مساحت دیده می‌شود. این دستگاه‌ها برای سامانه‌های تکراری استفاده می‌شوند.

جدول (1) نتایج اندازه‌گیری فاصله یک چهار متر

<table>
<thead>
<tr>
<th>متر</th>
<th>روز 1</th>
<th>روز 2</th>
<th>روز 3</th>
<th>روز 4</th>
<th>روز 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>19000</td>
<td>18790</td>
<td>18790</td>
<td>18490</td>
<td>18290</td>
</tr>
<tr>
<td>200</td>
<td>19000</td>
<td>18790</td>
<td>18790</td>
<td>18490</td>
<td>18290</td>
</tr>
<tr>
<td>300</td>
<td>19000</td>
<td>18790</td>
<td>18790</td>
<td>18490</td>
<td>18290</td>
</tr>
</tbody>
</table>

شکل (8) محیط تاست جزایی سامانه لیزری

5- نتیجه‌گیری:

برای اندازه‌گیری دقیق و بدون تاس سیستم جزئی ومد آب دریا استفاده از یک مسافت‌پاب از لیزری به روش منظور به روش است. لازم است را به همراه تکرارپذیری این سامانه با توجه به نتایج عملی بیشتر مطالب است.

- 4- مراجع