spin-orbit interaction effects on the optical properties of spherical quantum dot

Behrooz Vaseghi, Mahboobeh Mousavi and Ghasem Rezaei

Department of Physics, University of Yasouj, Yasouj

Abstract- In this paper we have investigated the Rashba spin-orbit interaction effects on the optical properties of a spherical quantum dot with infinite potential. In this regard energy eigenvalues and functions are calculated without considering the spin-orbit interaction. By means of new energy eigenvalues and functions, transition dipole moments, optical absorption coefficient and Refractive index are calculated. Results show that spin-orbit interaction and it's strength have considerable effects on the optical properties of the system.

Keywords: Rashba spin-orbit interaction, infinite potential, optical properties, optical absorption coefficient, Refractive index
۱- مقدمه
در دو دهه اخیر ساخت سیستم‌های با ابعاد کم در عرصه‌ی فیزیک حالت جامد رخدادی مهم محسوب می‌شود و نانوساختارها، رفتارهای متفاوت و خواص جدیدی را پیش روی ما می‌فرزند و اهمیت کار در مقياس‌های نانو را مشخص می‌کند[۱].

نامش‌های اخیر متمرکز بر درک خواص الکترونی و نوری نقاط کوتومی است[۲-۳] که این نقاط محدودی کوتومی را در هر سه راستای فضایی متحصل می‌شوند. پتانسیل محدودی کوتومی موجب تغییر جنگی حالت‌ها بر روی نقاط کوتومی با اعمال میدان‌های خارجی بر روی نقاط کوتومی دستکاری حالت‌های کوتومی مکانی می‌کند[۴].

در سال‌های اخیر اسپینتروندیودهای به اسپین توجه بیشتری را به خود جلب کرده است به طوری که کمک‌های اسپینی در پی شده است برای دستکاری و کنترل حالات الکترون از طریق ولتاژ گاف سیار مورد اهمیت قرار گرفته است[۵] ساخت‌های نیبورسانا با توجه به خواص تقریبی خود برهمکنش‌های مختلف‌ها را از خود نشان می‌دهند[۶]. در این مقاله به بررسی تأثیر برهمکنش‌های اسپینی- مادر در حضور میدان مغناطیسی خارجی بر ضرایب جذب و شکست نوری سیستم خواهیم خوانده. نتایج نشان می‌دهند که با در نظر گرفتن اثر اسپین- مدار قله‌های ضرایب جذب و شکست تغییر یافته و به‌هم ارتباطی خیلی بیشتری جهانی می‌شود. قدرت برهمکنش‌های اسپینی- مدار نیز تأثیر قابل ملاحظه‌ای بر خروج اپتیکی سیستم دارد.

۲- تئوری
در چهارچوب تقریب جرم مؤثر، هاملیتوین‌یک الکترون در یک نقطه کوتومی کروی تحت تأثیر میدان مغناطیسی خارجی و با اسپین- مدار را با رابطه زیر مشخص می‌شود[۷]:

\[H = H_0 + H_w \]

(۱)

که در آن \(H_0 \) به شکل زیر است[۸]:

\[H_0 = \frac{(P + eA)^2}{c} + U(r) \]

(۲)

که در این رابطه \(m^* \) جرم مؤثر \(\vec{A} \) پتانسیل برداری \(U(r) \) پتانسیل محدودی کوتومی و به صورت زیر می‌باشد:

\[U(r) = \begin{cases} 0 & r < r_0 \\ \infty & r > r_0 \end{cases} \]

(۳)

در رابطه (۱) هاملیتوین اسپین- مدار را با رابطه زیر مشخص می‌شود[۹]:

\[H_{so} = \frac{\alpha}{h^2} \left[\sigma \cdot (\vec{P} + e\vec{A}) \right] \hat{\mathbf{n}} \]

(۴)

که در رابطه فوق \(\alpha \) ضریب برهمکنش اسپین- مدار \(\hat{n} \) رابطه، \(\sigma \) ماتریسی پایلودی و بردار عمود بر سطح \(\vec{P} \) که در پیامدهای متفاوت \(\vec{A} \) پتانسیل برداری (۰) به صورت زیر می‌باشد:

\[\vec{A} = \frac{\vec{B}r}{2} \]

(۵)

در رابطه فوق عمیل‌های نیورونیاندیه حالت‌زایی‌های هستند. برای بدست‌آوردن ویژگی‌های ویژه مقداری سیستم توسط معادله‌های ریز

\[H_{\psi} (\vec{r}, \vec{\theta}, \varphi) = E \psi (\vec{r}, \vec{\theta}, \varphi) \]

(۶)

با حل معادله ویژه مقداری با ویژه توابع به صورت زیر بدست می‌آید:

\[\psi_{\text{nh}} (\vec{r}, \vec{\theta}, \varphi) = \frac{2}{\sqrt{2}} Y_{nm} (\theta, \varphi) \text{Whittaker M} \left(\frac{my + E \ell + \frac{1}{2} + n}{2\gamma} \right) \]

(۷)

که در این رابطه \(B \), \(\gamma = \frac{ebH}{2m^*CR \ell} \) میدان مغناطیسی، \(\vec{E} \) واحد مؤثر اروری خارجی، \(E_\text{r} \) و \(E_\text{a} \) از طریق پایلودی و پایلودی کوانتومی ماتریس میدان و \(\vec{A} \) نرم فضایی های اسپینی- مدار می‌باشد:

\[\psi_{\text{nh}} (\vec{r}, \vec{\theta}, \varphi) = C_+ \psi_{\text{nh}} X_+ + C_- \psi_{\text{nh}+1} X_- \]

(۸)
به‌طور کل، تغییرات ضرب جذب و ضرب شکست خشک، غیر خطیه و کلی

1-2 محاسبه تغییرات ضرب جذب و ضرب شکست خشک

اگر فرض کنیم سیستم مورد مطالعه در فاصله زیر نکود ۳ فاز قرار گیرد، بردار میدان الکتریکی قطعی‌بندی در جهت مربوط به این موج نوری می‌تواند به صورت زیر نوشته‌شود

\[E(t) = E(t) = (E_{int} + \tilde{E} e^{-int}) \]

که این میدان باعث ایجاد گشتاور دوقطبی گذار بین ترازها می‌شود که اجرای مانیسی ای یک گشتاور دوقطبی به صورت زیر بدست می‌آید

\[M_{ij} = \langle \psi_{ij} | \mathcal{E} | \psi_{ij} \rangle \] \(i, j = 1, 2, 3\)

که ویژه حالتی است که بویش مولکولان زیر داده می‌شود

\[\psi_{ij} = C_{i} \psi_{nm} + C_{j} \psi_{nm+1} \]

و احتمال انرژی ضرب جذب و ضرب شکست خشک و غیر خطیه را به‌طور کلی به صورت زیر بدست می‌آورد

\[\Delta n_{ij} = \frac{\sigma_{ij}}{n_{i}} \int \left[\frac{E_{ij}}{E_{nm} - h\omega} \right] \left[\frac{n^{2} E_{nm}}{E_{nm} - h\omega + (\omega / c)^{2}} \right] \]
گرفتن اثر اسپین- مدار فلاتهای ضرباب جذب و شکست افزایش یا کاهش یافته و به سمت ازیزی‌های بزرگ‌تر جابه-جا می‌شوند. افزایش و کاهش با افزایش انیکیت‌ها به طور چشم‌گیری به قدرت برهمکنش اسپین-مدار وابسته است. با افزایش قدرت برهمکنش اسپین-مدار فاصله ترازهای افزایش شده، همکوبی بین توابع موج کاهش یافته و ماده افزایش ارزی بین ترازهای فلاتهای ضرباب جذب و شکست به سمت افزایش به شکست ماده افزایش کاهش می‌یابد. با افزایش ارزی ماده افزایش گزفتی اثز و در مدار ضرباب جذب دارد.