تأثیر بر همکنش اسپین- مدار بر خواص نوری نقطه‌ای کوانتومی کروی

بهروز واثقی، محبوبه موسوی و قاسم رضایی
گروه فیزیک، دانشگاه یزد، یاسوج

چکیده - در مقایسه با اثر بر همکنش اسپین- مدار راشبا را بر روی خواص نوری یک نقطه‌ای کوانتومی کروی نیپرسان با یک انتقال نامحدود و بررسی خواصی کرد. در این راستا ابتدا ویژگی‌های ویژه مدار راشبا و ویژگی‌های اسپین- مدار راشبا با دستگاه آورده و سپس با اضافه نامحدودی بر همکنش اسپین- مدار راشبا و ویژگی‌های اسپین- مدار راشبا با دستگاه آورده و با استفاده از آنها به محاسبه فرآیند جذب و شکست و تأثیر بر همکنش اسپین- مدار بر آن‌ها پرداخته شد. نتایج حاکی از تأثیر فرآیند جذب و شکست در اثر حضور بر همکنش اسپین- مدار به‌شمار می‌آید.

کلید واژه- بر همکنش اسپین- مدار راشبا، یک انتقال نامحدود، خواص نوری، ضریب جذب، ضریب شکست

spin-orbit interaction effects on the optical properties of spherical quantum dot

Behrooz Vaseghi, Mahboobeh Mousavi and Ghasem Rezaei

Department of Physics, University of Yasouj, Yasouj

Abstract- In this paper we have investigated the Rashba spin-orbit interaction effects on the optical properties of a spherical quantum dot with infinite potential. In this regard energy eigenvalues and functions are calculated without considering the spin-orbit interaction. By means of new energy eigenvalues and functions, transition dipole moments, optical absorption coefficient and Refractive index are calculated. Results show that spin-orbit interaction and its strength have considerable effects on the optical properties of the system.

Keywords: Rashba spin-orbit interaction, infinite potential, optical properties, optical absorption coefficient, Refractive index

861
مقدمه

در دو دهه اخیر ساخت سیستم‌های با ابعاد کم در عرصهٔ فیزیک حالات جامدی و خود از Jeh ناب‌نمایندگان، رفتارهای منطقی و خوایی را پیش روی می‌گذارد و اهمیت کافی در مفسّرات نوی و مشخص می‌شود. [1]

نام‌هایی اخیر متومکر بر درک خوای الکترونی در معادلات انتگرالی کوانتومی است. [2] که این مقادیر محاسبه‌ای کوانتومی را در بردار مستقیم، فضایی محتمل به‌شمار می‌دهند. پنخ‌های دانش‌های کوانتومی موجب تغییر جدی‌الحالت‌ها تأثیرگذاری و به‌همین‌صورت در اعمال می‌شود. ساختاری از رودی که کوانتومی می‌شود. [3]

در سال‌های اخیر، اسپینیونیک (بدیده‌های وابسته به اسپین) توجه بی‌پای را به خود جلب کرد و است به طوری که مالکیت اسپین کوانتومی - مدار به عنوان یک ماکان برای استراتژی و کنترل حالات الکترون بر طرز و تندی سیب مورد اهمیت قرار گرفته است. [5] ساختارهای نیپرسانی به جوییدن خواص نوری خود برهمکنش‌های متغیرها را از خود نشان می‌دهند. [6] در این مقاله به بررسی تأثیر برهمکنش اسپین-میدان در حضور میدان‌های مغناطیسی خارجی بر ضرایب جذب و شکست نوری سیستم خوایی می‌پردازه. نتایج شان می‌دهند که با توجه به کوانتوم‌اتر است که مدار قله‌ی ضرایب جذب و شکست تغییر بافت و به‌همین‌صورت برهمکنش‌های بیشتر جای می‌گیرد. قدرت برهمکنش اسپین-میدان نیز تأثیر قابل ملاحظه‌ای بر خواص ایتکی سیستم دارد. [7]

- تئوری

در چهارچوب تئوری جرم مؤثر، هامیلتونی به الکترون در یک نقطه کوانتومی کروی تحت تأثیر میدان مغناطیسی خارجی و با اسپین-میدان راه‌ها را به راه‌هایی تبدیل می‌کند [8]:

\[H = H_0 + H_I \] (1)

که در آن \(H_0 \) به شکل زیر است [8]:

\[H_0 = \frac{(P + e \mathbf{A})^2}{c^2} + U(r) \] (2)
مختصات استاتیسی یا تأثیر هامیلتونی کل سیستم بر وزنه توابع بالا به صورت

\[H(C, \nu_{nm}) = E_{\pm} \begin{pmatrix} C_{\nu_{nm}} \\ C_{\nu_{nm}+1} \end{pmatrix} \]

و وزنه توابع ارزی کل و وزنه مقادیر از معادلات انگریزی

\[\psi_{i, j} = C_{i} \nu_{nlm} + C_{i} \nu_{nlm+1} \]

\[E_{ij} = E_{i} - E_{j} \]

\[\Delta \nu_{ij} = \frac{\sigma_{11}}{n_{\nu}} \frac{1}{E_{ij} - \nu_{nlm} - \nu_{nlm+1}} \]
در ضرایب ۲۱، پرپتیتی و خردتی در سرعت تغییرات ضرایب جذب و شکست ضرایب جذب و شکست می‌باشد. با افزایش انتزی ۲۱، شکست موج کاهش یافته و در ضرایب شکست موج نازل قله‌ها به مقادیر کمتر و افزایش ضرایب شکست به مقادیر بیشتر می‌شوند. افزایش قله‌های ضرایب جذب ناشی از سهم بزرگ‌تر در افزایش نسبت به است که حاصل‌ضرب آن نشان تعیین کننده ۲۱ در مقادیر ضرایب جذب دارد.

مراجع

