Generation of entangled photon pairs in atom-cavity-Laser system via adiabatic passage: Effect of cavity decay

Mahdi, Amniat-Talab; Hasangholi, Mohammadi; Rozita, Mirahmadi; Maghsud, Saadati-Niari
Department of Physics, Faculty of sciences, Urmia University, P.B. 165 Urmia, Iran.

We present a robust scheme in atom- cavity- laser system which can effectively produce entangled photon pairs. We also analyze the effect of cavity decay on the population transfer by numerical solution of the Schrödinger equation. In this scheme, a tripod atom successively couples with two single mode optical cavities possessing σ^+ and σ^- polarizations. This process is assisted by a classical π-polarized pump field. Losses due to atomic spontaneous emissions is efficiently suppressed by employing adiabatic passage technique.

Keywords: Entanglement, Adiabatic passage, Cavity, Photon. Entangled states.
1- مقدمه

در هم تنیدگی کوانتومی [1] یکی از با ارزشترین ارکان علم اطلاعات کوانتومی به شمار می‌رود، که کاربردهای زیادی در زمینه طراحی دیگرهای کوانتومی و انتقال از راه دور حالت‌های کوانتومی EPR دارد. اخیراً، تلاش‌های زیادی برای تولید حالت‌های جدید در هم تنیدگی از دو کویپت [2-3] صورت گرفته است. در این طرح‌ها، ایجاد یکی از حالت‌های سنتی کوانتومی EPR در سیستم اتم-کوکک-لیزر بررسی شده شد. برای این کار یک اتم سه پایه که با دو میدان کوانتومی با فضایدگی‌های دایروی راستگرد +$$\pi$$ و دایروی چپ‌گرد -$$\pi$$ و یک میدان کلاسیکی با فضایدگی خطر $${\beta}$$ بر همکاری دارد، در نظر گرفته شد. و با عبور اتم از دو کوکک مشابه، ایجاد حالت‌های در هم تنیدگی دو فوتونی مطالعه خواهند شد.

در طول تحلیل زمانی سیستم، اثر ناپایداری، شامل مدل، نمایان می‌گردد که $${|i\rangle}$$ نهایی می‌باشد که در حالت $$g$$، متشکل از $$|00\rangle$$ و $$|11\rangle$$ در حالت $$a$$ سیستم در زیر فضای نشان داده شده در شکل ۱ و در ترتیب جوگردن به صورت زیر خواهد بود.

$$H(t) = \Omega(t)\sigma_{sx} + g_a(t) \sigma_{sx} + R(t) \sigma_{sx} + H.C.$$

در هالیمتونی (۱) فرض شده است که به‌شکل زمانی میدان‌های کوانتومی با فضایدگی مشابه و منفی با هم برای پاتر باعث یعنی در نوشتار انتقال برتر [5] $$T = g_a(t)$$ با تعریف ماتریس تبدیل $$\big|S\big\rangle = \begin{bmatrix} \phi_1 & \phi_2 & \phi_3 & \phi_4 \end{bmatrix}$$ به صورت زیر است:

$$T =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 0 & 1 & 0
\end{bmatrix}.$$

1. Einstein- Pololsky- Roson (EPR)
2. Rotating wave approximation (RWA)
بیستمین کنفرانس اینترکت و فوتونیک ایران به همراه ششمین کنفرانس مهندسی و فناوری فوتونیک ایران

منتقل خواهد شد. اگری جفت شدگی این مرحله در شکل ۳ EPR رسم شده است.

\[
\tilde{H} = T^+ H T = \begin{bmatrix}
\Omega(t) & 0 \\
0 & \tilde{g}_1(t)
\end{bmatrix},
\]

که در آن، \(\tilde{g}_1(t) = \sqrt{2} g_1(t)\). همایونی رابطه (3) دارای یک عبارت مربوط به ویژه مقدار صفر است که اصطلاحاً حالی تاریک نامیده می‌شود.

\[
D(t) = \frac{1}{\Omega(t)} \left(\tilde{g}_1(t) |\phi_1\rangle + \Omega(t) |\phi_2\rangle \right).
\]

از روش گذشته درست کرده، برای انتقال کامل جمعیت سیستم از حالت \(|\phi_1\rangle\) به حالت \(|\phi_2\rangle\) از ترتیب بالا شده استفاده می‌کنیم. ابتدا فرض می‌کنیم که در زمان‌های اولیه بالا لیزر خاموش و میدان کوانتمی \(g(t)\) روش‌شان باشد. در این صورت حالت اولیه سیستم به صورت زیر خواهد بود:

\[
|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left(|10\rangle |01\rangle_2 + |01\rangle |10\rangle_2 \right) |g\rangle.
\]

که یک حالت در هم تینیده بیشترین از نوع EPR انتقال زمانی بالا و جمعیت باید برای ایجاد یکی از این عناصر می‌گردد.

\[
|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left(a |10\rangle_1 |11\rangle_2 + b |01\rangle_1 |11\rangle_2 \right) |g\rangle.
\]

یک شبیه سازی عددی از مرحله اول را نشان می‌دهد که بر اساس فرکانس‌های راهی به صورت زیر گم شده است:

\[
\Omega(t) = \Omega_0 e^{-(t-\tau)/\tau^2} T,
\]

\[
g^+_1(t) = g_0 e^{-(t-\tau)/\tau^2} T^2,
\]

که در رابطه با \(\Omega_0\) و \(g_0\) نشان دهنده دامنه بیشترین \(\tau\) تأخیر زمانی بالا و \(T\) نشان دهنده پیمان بالا می‌باشد.

جمعیت سیستم

به‌طور کل، در این مرحله با قرار دادن از کاکک دوم، جمعیت سیستم از حالی نهایی مرحله اول به حالت در هم تینیده فوتونیک
خودی که بر اثر جمعیت دار شدن تراز تحریکی صورت می‌گیرد، با استفاده از روش گذار بی درو تحریکی رامان قابل جمعیت‌سازی است. آن‌ها در طول تغییرات زمینه جمعیت دار شدن می‌پردازند. کاواک مصری به پیش‌رده ناهیدن اتلاف کاواک خواهد. در این بخش از اتلاف کاواک، اتلاف ناخالصی بر آن در مرحله اول برسی خواهد. هامیلتونی (1) در حضور اثر اتلاف کاواک به صورت زیر خواهد بود.

\[H_{1}(t) = \begin{bmatrix} 0 & 0 & 0 & \Omega(t) \\ 0 & -i\kappa & 0 & g_{1}(t) \\ 0 & 0 & -i\kappa & g_{2}(t) \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad (9) \]

در رابطه بالا، \(\kappa \) نشان دهنده نرخ اتلاف کاواک می‌باشد. به منظور بررسی اثر اتلاف کاواک بر گذار جمعیت، جمعیت نهایی تراز \[|\alpha\rangle|10\rangle|11\rangle \] در شکل 5 رسم شده است.

شکل 5: جمعیت نهایی تراز \[|\alpha\rangle|10\rangle|11\rangle \] نسبت به نرخ اتلاف و ناخالصی زمینه باشگاه‌ها می‌باشد. این رسم به شکل 2 رسم شده است.

همانطور که در شکل مشاهده می‌شود، این طرح نسبت به اثر اتلاف کاواک حساس بوده به طوریکه برای \(\kappa = 0.06T^{-1} \) مقدار جمعیت نهایی تراز \[|\alpha\rangle|10\rangle|11\rangle \] برای صفر شده و به عنوان جمعیت صورت می‌گیرد. همچنین تغییر جمعیت حالت نهایی نسبت به تغییرات ناخالصی زمینه می‌دهد که تغییرات تاخیر زمینه تأثیر بکارهای بر کاهش اثر اتلاف کاواک تندارد.

۴ نتایج

در این مقاله یک طرح جدید برای ایجاد حالت در هم تنبیه فوتونی در سیستم اتم-کاواک-فیبر با بوسیله گذار بی درو تحریکی EPR رامان ارائه شد. در این طرح جدید، این نیم سیستم به عنوان داخلی کاواک که هر کدام دارای دو میدان کوانتومی با قطعیتی چیزگر و