حالت‌های عددی جابجاشده غیرخطی و بررسی برخی از ویژگی‌های غیرکلاسیکی آنها

ندا اصلی فیروزآبادی و محمد کاظمی توسی

چکیده - در این مقاله برآیندی که در ناحیه رده‌ای خاصی از میدان‌های تابشی که آن‌ها را جهت حالت‌های عددی جابجاشده غیرخطی می‌نمایند، برخی از ویژگی‌های غیرکلاسیکی آن‌ها از جمله آمار کوانتومی زیرپویا، چلاژکی‌های مربوط اول و دوم، توابع شبیه-توزیع هوسیمی و ویجنر را بررسی کنیم.

کلید واژه‌ها - دو آمار کوانتومی زیرپویا، توابع شبیه-توزیع، چلاژکی‌های اول و دوم، ویژگی‌های غیرکلاسیکی.

Nonlinear Displaced Number States and Their Non-classical Properties

Asili Firoozabadi, Neda ۱; Tavassoly, Mohammad Kazem ۱, ۲

۱Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd
۲Photonic Research Group, Engineering Research Center, Yazd University, Yazd

Abstract- In this paper, we intend to introduce a particular class of radiation field which is called nonlinear displaced number states. Then we will investigate a few of their non-classical properties, like sub-Poissonian statistics, quadrature squeezing, amplitude-squared squeezing, Husimi and Wigner quasi-distribution functions.

Keywords: sub-Poissonian statistics, quasi-distribution functions, quadrature squeezing and amplitude-squared squeezing, non-classical properties.
2- معرفی حالت‌های عددي جابجایی غیرخطی
این حالت‌ها را با تأثیر عملکردهای جابجایی غیرخطی (د) داریم. روش حل حالت‌های عددي
عملکردهای اولیه به صورت [\(D_f (α) = e^{αf} \cdot A \)]، که به‌صورت [\(A = e^{-f (h)} \cdot A \cdot e^{f (h)} \)] تغییری در ناحیه‌های نابودی و خلق و همچنین
عملکردهای مخصوصی نتیجه می‌گیرد.

\[
[α,f,n] = D_f (α)[n] \]

\[
= N \sum_{m=0}^{\infty} \left(m \mid D_f (α)[n] \right) m \] (5)

برای داشتن سطح حرارتی حالت‌های مورد نظر کافی است
عناصر ماتریسی عملکردهای [\(D_f (α) \)] را محاسبه کنیم:

\[
C_m = \left\{ \left(m \mid D_f (α)[n] \right) m \right\} = \left\{ \sum_{m=0}^{\infty} f (m)! \frac{e^{-f (h)} \cdot A^{m-n} \cdot \left[e^{f (h)} \right]^m}{m!} \right\} = m \leq n \]

\[
= \left\{ \sum_{m=0}^{\infty} f (m)! \frac{e^{-f (h)} \cdot A^{m-n} \cdot \left[e^{f (h)} \right]^m}{m!} \right\} = m \geq n \] (6)

برای حالت‌های غیرکلاسیکی، ضرایب این حالت‌ها [\(\alpha,f,n \)] حالت‌های روزی حالت‌های دیده از [\(D_f (α) \)] به شکل زیر معرفی شده‌اند:

\[
C_m = \left\{ \left(m \mid D_f (α)[n] \right) m \right\} = \left\{ \sum_{m=0}^{\infty} f (m)! \frac{e^{-f (h)} \cdot A^{m-n} \cdot \left[e^{f (h)} \right]^m}{m!} \right\} = m \leq n \]

\[
= \left\{ \sum_{m=0}^{\infty} f (m)! \frac{e^{-f (h)} \cdot A^{m-n} \cdot \left[e^{f (h)} \right]^m}{m!} \right\} = m \geq n \] (7)

3- بررسی ویژگی‌های غیرکلاسیکی
حال می‌توان ویژگی‌های غیرکلاسیکی حالت‌های معرفی شده را تجزیه و تحلیل کرد. اما قبل از آن باید تابع
غیرخطی را تعیین کنیم. هرچند انتخاب توابع غیرخطی
مختلفی وجود دارد، حالت‌های عددي
غلاب‌سازی غیرخطی متفاوتی می‌شود که قطعاً
ویژگی‌های متفاوتی خواهد داشت. ما در این مقاله تابع
تغییری شکل را در [\(k \leq 1 \)] که [\(k \neq 0 \)] در [\(n \leq 1 \)] نظر به گریمی [\(k \neq 0 \)].

پارامتری مدل: یکی از میزان‌های که معمولاً برای تعیین
یک کلاسیکی جدول حالت‌ها مورد بررسی قرار می‌گیرد
پارامتر مندل است که به شرح زیر تعریف شده است: ۴]

\[
Q_M = \frac{\langle n^2 \rangle - \langle n \rangle^2}{\langle n \rangle} - 1 \quad (7)
\]

که \(Q_M = 0\) است و \(Q_M > 0\) به ترتیب مقاطع با آمار فراپاژوسنی (کلاسیکی)، زیرپاژوسنی (گیرکلاسیکی) و پاژوسنی (حاله همودس استاندارد) است.

\[
\alpha = \frac{\langle n^2 \rangle - \langle n \rangle^2}{\langle n \rangle}
\]

برطبق شکل \(k = 0\) به ازای همه مقادیر \(n = 0, 3, 6, 10\) دارای آمار بکارزمایی مقادیر گستردگی از \(\alpha\) و بازای مقادیر \(n = 3, 6, 10\) دارای آمار زیرپاژوسنی و بنا براین گیرکلاسیکی است.

چلاتنگی مرتبه اول: برای مطالعه چلاتنگی مرتبه اول دو عملکرد هرمیتی \(x = \frac{a+a^t}{\sqrt{2}}, y = \frac{a-a^t}{\sqrt{2}}\) با روابط زیر چلاتنگی در راستای \(x\) و \(y\) را محاسبه می کنیم:

\[
s_{x} = 2\left(\langle \Delta i \rangle^2\right) - 1, \quad i = x, y \quad (8)
\]

\[
s_{x} = 2\left(\langle a^t \rangle + \langle a \rangle^2\right) + \left(\langle a^2 \rangle - \langle a \rangle^2\right) - 2\langle a \rangle\langle a^t \rangle \quad (9)
\]

\[
s_{y} = 2\left(\langle a^t \rangle - \langle a \rangle^2\right) + \left(\langle a^2 \rangle - \langle a \rangle^2\right) - 2\langle a \rangle\langle a^t \rangle \quad (10)
\]

چلاتنگی در راستای \(y\) زمانی اتفاق می افتد که

\[
1 - 1(s_y(0) - 1) = 0
\]

همانطور که از نمودارهای شکل ۲ پدیده در راستای \(y\) چلاتنگی دیده می شود، در حالی که در \(n = 0\) به ازای همه مقادیر گستردگی \(\alpha\) برای مقادیر \(n = 3, 6, 10\) بازای آمار هم می زند، دارای آمار چلاتنگی در راستای \(x\) از \(\alpha\) است.
همانطور که از نمودارهای شکل ۲ مشخص است در راستای X چهارگانگی در مقادیر مختلف α دیده می‌شود. در حالت X، شرط چهارگانگی در راستای Y، نهایی در به این مقادیر بسیار کوچک α بترین است.

۳-۱- ثوابت شبه توزیع

تایب توزیع هویسیم: ثابت توزیع هویسیم به صورت زیر تعریف می‌شود:

$$Q(\beta) = \frac{1}{\pi} \left| \langle \beta | \pm \rangle \right|^2$$

در رابطه بالا (|β⟩) یک حالت همدوش استاندارد و حالت کوانتومی دلخواه است که در اینجا حالت عددی

جابجاشده غیرخطی است. مطالبی با رابطه (12) :

$$Q(\alpha) = \frac{1}{\pi} \left| \langle \alpha | \pm \rangle \right|^2$$

در این مقاله ضمن معرفی رده جدیدی از حالت‌های همدوش، که آن را حالت‌های عددی جابجاشده غیرخطی نامی‌دهیم، یک‌گی‌های غیرکلایسکی آن را با انتخاب یک تابع غیرخطی عضوی بررسی و تبیین کرده و به این نتیجه رسیدیم که این حالت‌ها در برخی نواحی بطور غیرکلایسکی رفتار می‌کنند.

مراجع

شکل ۴: نمودار ثابت Q(α) به ازای \(\alpha \) یک حالت غیرکلایسکی بودن سطح متغییر این تایب توزیع نشان‌دهد. وجود چهارگانگی در راستای Y، یکی از منظوره‌های همچنین صفرشدن این ثابت به معنی منفی‌شدن (تابع کلاور-سودارشان) است.

تابع توزیع ویگنر: ثابت توزیع ویگنر مواد مقادیری منفی را در فضای فاز یگبرد. ثابت ویگنر حالت مورد نظر را به کمک رابطه زیر محاسبه می‌کنیم:

$$W(\alpha, \alpha^\ast) = \frac{2}{\pi} \sum_{k=0}^{n} (-1)^{k} \left(\alpha, k \left| \rho \left| \alpha, k \right. \right. \right)$$

حال حالت عددی جابجاشده خلاصی معرفی شده در