A Geometrical Approach to Quantum Correlation

S. Javad Akhtarshenas ¹,²,³, Hamidreza Mohammadi¹,², Saman Karimi¹ and Zahra Azmi¹

¹Department of Physics, University of Isfahan, Isfahan
²Quantum Optics Group, University of Isfahan, Isfahan
³Department of Physics, Ferdowsi University of Mashhad, Mashhad

Abstract- A general state of an $m \otimes n$ system is a classical-quantum state if and only if its associated left-correlation matrix has rank no larger than $m-1$. Based on this condition, a computable measure of quantum discord is presented, which coincides with the tight lower bound on the geometric measure of discord. Therefore such obtained tight lower bound fully captures the quantum correlation of a bipartite system, so it can be used as a measure of discord in its own right. Accordingly, a vanishing tight lower bound on the geometric discord is a necessary and sufficient condition for a state to be zero-discord.

Keywords: classical-quantum states, left-correlation matrix, quantum discord, quantum correlation.
1- مقدمه

ناهم‌خوای کوانتومی عمیق‌تر برای سنجش میزان هیپستیک‌کوانتومی نهفته در یک سامانه کوانتومی است که از راه‌های جدیدی به هیپستیک‌ها می‌گردد. در حقیقت ناه‌خوای کوانتومی میزان هیپستیک‌ناهی باید را از ادعا و اطلاعات قابل حصول از اندازه‌گیری مستقیم و بنابراین تفاوت اساسی با میزان دیگر هیپستیک‌کوانتومی علی‌رغم بروز تغییرات در روش‌هایی که

$$D_G(\rho) = \min_{\Pi^A} \left\| \rho - \Pi^A(\rho) \right\|^2. \quad (3)$$

که در آن، کم‌بزرگی بر روی تمام اندازه‌گیری‌های گالوان‌بودن اولیه برابر $\Pi^A = \{ \Pi^B_k \}_k$ این الگوی ρ در Π^A است. در برابر $\Pi^B(\rho) = \sum_k^m (\Pi^B_k \otimes I^B_k) \rho(\Pi^B_k \otimes I^B_k)$ این معادله این حالت پس از اندازه‌گیری است. نمایش کلی حالت یک سامانه دو بخشی در نمایش هیلبرت‌اشتمت به صورت زیر است:

$$\rho = \frac{1}{\text{Tr}(I)} \left(\mathbb{I} + \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} \alpha_i \alpha_j \mathbb{I} \otimes \mathbb{I} + \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} \beta_i \beta_j \mathbb{I} \otimes \mathbb{I} \right). \quad (4)$$

که در آن α_i, β_i مولدهای $\mathbb{I} = \{ \mathbb{I} \}_i$ و $\mathbb{I} = \{ \mathbb{I} \}_i$ هستند، در این عملکرد ماهیت و $SU(n)$ و $SU(m)$ معامله‌های هستند. را و \mathbb{I} و \mathbb{I} بطور مستقل \mathbb{I} و \mathbb{I} با استفاده از نمایش هیلبرت‌اشتمت برای یک حالت دوقسمتی کلی فضای یک‌تایی برای $m \otimes n$ ناه‌خوای هندسی به صورت زیر تعریف نمودند.

$$T_{ij} = \frac{m n}{4} \text{Tr} \left[(\tilde{A}_i \otimes \tilde{B}_j) \rho \right]. \quad (5)$$

در اینجا $\| \tilde{A}_i \|_1$, $\| \tilde{B}_j \|_1$ و $\| \rho \|_1$ هستند. بر روی یک دوقسمتی کلی $X-Y^T Y \geq \sigma$ برای یک ماتریس σ ناه‌خوای هندسی به صورت زیر تعریف نمودند.

$$D_G(\rho) = \min_{\Pi^A} \left\| \rho - \Pi^A(\rho) \right\|^2 = \frac{2}{m n} \sum_{k=1}^{m-1} \sum_{l=1}^{m-1} \| \tilde{A}_k \|_1 \| \tilde{B}_l \|_1 \rho \otimes \mathbb{I} \quad (6)$$

که در آن $\rho \in \mathcal{D}$ ناه‌خوای هندسی مجموعه حالت‌های با $\| X-Y^T Y \|_1 = \sigma$ نمایش دهنده است. این کمیت برای حالت‌های کلاسیک-کوانتومی صفر می‌شود، زیرا در حالت‌های همچنین از نمایش هیلبرت-اشتمت فرمول‌بردن بسته برای ناه‌خوای هندسی حالت‌های دوکوانتومی به راحتی بررسی و ماتریس هیپستیکی حالت به دست آورده تاکنون ناه‌خوای هندسی برای حالت‌های دلخواه $2 \otimes n$ و برخی حالت‌های
بیستمین کنفرانس ایتیک و فتونیک ایران به همراه ششمین کنفرانس مهندسی و فناوری فتونیک ایران

 قضیه ۱: حالت دوقسمتی \(H^A \odot H^B \) با ناهنجاری چپ صفر است. یعنی حالتی کلاسیک-کوانتومی \(H^A \) است اگر و تنها اگر عملگر رافکتیون \(R = \begin{pmatrix} m & -1 \\ 1 & m \end{pmatrix} \) بر فضای \(P \) بعثی \((m^2 - 1) \) بردار \(x \) وجود داشته باشد به طوری که روابط زیر برقرار باشد:

\[
\begin{align*}
PT &= x, \\
PT &= T.
\end{align*}
\]

براساس مربوطه هیستوگرما، داکیوک، و همکارانش [19], شرط لازم برای ناهنجاری صفر بودن حالت‌های دوقسمتی دلخواه معرفی نمودند. پس از شرط لازم و کافی برای صفر بودن ناهنجاری حالت‌های دوکوپنی توسط لو و همکارانش ارائه شد [19]. شرط آن‌ها وجود یک بردار واحد که شرایط زیر را در این صورت باشد، است:

\[
\begin{align*}
\hat{n}^T x &= x, \\
\hat{n}^T T &= T.
\end{align*}
\]

در این مقاله ابتدا تعریفی برای معادله (۷) ارائه می‌شود و بر اساس آن تعریف ماتریس چپ-هیستوگرما شرط لازم و کافی برای صفر بودن ناهنجاری یک برای ارائه می‌شود. سپس با استفاده از آن رویش هندسی برای تعیین مقداری ناهنجاری کوانتومی پیشنهاد می‌کند. به نهایت زمانی موجود در تعریف را می‌توان به طور تحلیلی حکم و این منجر به شکلی خاص برای ناهنجاری هندسی می‌شود. نکته جالب اینجا است که این مقایسه ناهنجاری‌های برای یکی از محدودیت‌های ناهنجاری هندسی که در معادله (۶) معرفی شده، منطقی می‌باشد. بدان عما که در مورد معرفی حالت دیگر (۷) خود می‌تواند نتیجه برای تعیین هیستوگرما نهفته در سامانه‌های کوانتومی باشد.

2- توصیف حالت‌های کلاسیک-کوانتومی

در این بخش شرط لازم و کافی معرفی شده در معادله (۷) را به سامانه‌های با ابعاد بالاتر تعمیم می‌دهیم و بر این اساس در پایان برای اینک که سنجش هندسی جدید برای ناهنجاری کوانتومی معرفی می‌کنیم. اینک توجه می‌کنیم را به حالت دوقسمتی \(H \odot \text{rank} \) روزی فضای معطوف کرده و مجموعه حالت‌های ناهنجاری صفر را بررسی می‌کنیم.
$I_P(\rho) = \|I\|_F^2 = \sum_{k=1}^{m-1} \gamma_k^2, \quad C_P(\rho) = \max_{\rho_{TI}} \|P_{TI}\|_F^2 = \sum_{k=1}^{m-1} \gamma_k^2.$ \hfill (19)

For a pair of observables $D(\rho)$ is $D(\rho) = I_P(\rho) - C_P(\rho)$.

In this case, one can write:

$$D(\rho) = D_G(\rho) = \frac{m-1}{m} D(\rho).$$

\hfill (15)

Theorem

In the case of two-qubit systems, the geometric discord is given by

\begin{align*}
D_P(\rho) &= \min_{\rho_{TI}} \|\mathcal{E} - P\|_F^2 \\
&= \frac{2}{mn} \min_{\rho_{TI}} \left\{ \|\mathcal{T} - \mathcal{E}\|_F^2 + \frac{2}{n} \|\mathcal{F} - \mathcal{P}\|_F^2 \right\}.
\end{align*}

\hfill (16)

and

$$D_P(\rho) = \max_{\{\bar{n}_i\}} \left[\sum_{i=1}^{m-1} \bar{n}_i (\bar{T}_TT)^i \right].$$

\hfill (17)

\begin{align*}
D_P(\rho) &\leq D_G(\rho).
\end{align*}

\hfill (18)