Investigation of Non-Classical Properties of the Radiation Field in the Interacting Atom-Field System in the Presence of Kerr Nonlinearity and Vacuum-Induced Coherence

Zahra Musavi Madani1 and Mohammad Hossein Naderi2

1Department of physics, University of Isfahan, Isfahan, Iran

2Quantum Optics Group, Department of Physics, University of Isfahan, Isfahan, Iran

Abstract- In this paper, we study the possibility of controlling the stationary entanglement and squeezing between the two modes of a cavity by spontaneously generated coherence in the three level atoms in the presence of the Kerr nonlinearity. We show that the correlation between the two modes increases for some values of the nonlinearity coupling parameter in the presence of dissipative processes. In addition, the entanglement and the squeezing between the two modes increase when the resonance condition between the atom and the field is fulfilled.

Keywords: squeezing, entanglement, Kerr nonlinearity, spontaneously generated coherence.
برانگیرش یک میدان لیزوری با ساماد و ω_L رابی 2Ω قرار می‌گیرد. تجویز زمانی متغیر چگالی کل سامانه دریک دستگاه چرخش داخلی بسیار قدرت ω_L به صورت زیر است

$$\frac{d\rho}{dt} = -i[H_V + (V + V_{kin})\rho] + L_G\rho.$$

(1)

که در آن

$$H_V = -\delta a_1^\dagger a_1 + \delta a_2^\dagger a_2,$$

$$H_{V - f} = \Lambda_1 A_1 A_1 + \Lambda_2 A_2 - \Omega A_3 + h c,$$

$$V = (a_1 + a_2)gA_{13} + h c,,$$

$$V_{kin} = g_1 a_1^\dagger a_1 a_2^\dagger a_2.$$ $$L_G = \sum_{\nu} \nu_\nu (2a_\nu^\dagger p_\nu - a_\nu p_\nu a_\nu^\dagger + \eta a_\nu + \rho a_\nu a_\nu^\dagger + \eta\nu a_\nu^\dagger a_\nu).$$

(2)

در این روابط h را برای h به ترتیب هامیلتونی میدان، هامیلتونی V_{kin} و برهم‌کنش آتی با میدان لیزوری، هامیلتونی برهم‌کنش دو میدان درون کاواک با آتی و هامیلتونی برهم‌کنش دو میدان با محیط غیرخطی اس. علاوه بر این، L_G که اندک بودن درون کاواک و سامانه انتی را نشان $L_G\rho$ می‌دهد و $\nu_\nu (i = 1, 2, 3)$ به ترتیب آنگاه گسیل خودی‌خودن یافته در فضای آزاد و پیام‌های هیدروسیمی است. در اینجا فرض می‌شود که سیستم گسترش‌دار و به‌طور گسترده باکتری مایزی ناحید a_2 و a_1 عملکردی بازی نامیده می‌باشد g_{12} g_{12} عملکردهای یک دیگر دو می‌باشد و می‌باشد با محیط غیرخطی کر و اتم G_V و داده‌گرای ساماد لیزوری Ω_0 و Ω_1 نسبت به ساماد گذار آن $\omega_2 \equiv \omega_0 - \omega_1$ است. همچنین

$$\omega_2 \equiv \omega_0 - \omega_1$$

(3) انت تراز با اگزیسته ν_ν آنگاه قرار می‌گیرد.

$$\rho = \frac{1}{2} (\| \| + \| \|).$$

(4)

1- مقدمه

تولید حالت‌های درهم‌یوندگی گاز‌های به ویژه حالت خلا چالندی به مدتی به عنوان یک گام اساسی در پیشرفت اطلاعات کامپیوتری به شمار می‌آید. تولید این حالته در سامانه‌های الکترودینامیک کامپیوتری درون کاواک از اهمیت ویژه برخوردار است. به این اساس، جفت‌شده کریستال میدان مدله‌های میان حالت‌های کاواک برای تولید این حالته‌ها از طریق جفت‌شدن آسان‌ساز از اینام‌های غیر برهم‌کنش $[1]$ و یا یک محیط غیرخطی $[2, 3]$ امکان‌پذیر است. در سال‌های اخیر یک از بی‌پی‌پی‌های که برای تحقیق این هدف مورد استفاده قرار گرفت هم‌سایزی حامل از گسیل‌های خلا $[4, 5]$ مورد نظر برای نشان می‌دهد در صورت پیش‌بینی داخل کامپیوتر میان، سیستم‌های گزار در سامانه‌های انت‌چندترازی امکان تولید حالت‌هایی در این مقاله به بررسی مکان کنترل و تقویت ویژگی‌های غیرکامپیوتری میدان می‌باشد که درون کاواک و هم‌سایزی خلا $[6]$ امکان‌پذیر می‌باشد. با استفاده از این مکان که در این مقاله پیش‌بینی شده می‌باشد، جفت‌شده غیرخطی کر در یک دیگر $D > D_{12}$ باشد و در این مقاله میان، سیستم شیمی به‌خور مناسبهمان سیستم ناشی از تغییر فرمون‌های هر می‌باشد تغییر خواهد داد. همچنین با یک گام که لنز $[6]$ امکان درهم‌یوندگی $D > D_{12}$ در شرایط و درآورده شده است. این مقاله به نشان می‌دهد در نهایت چگونگی را به دست می‌آوریم. نشان می‌دهم برای مقدار D_{12} به شرایط باوارپایی درهم‌یوندگی و چگونگی بیشتری می‌شود.

2- الگوسازی فیزیکی

مطالب قبل 1 سامانه‌های مشابه از یک اتم سنتزی با پیکبرنده V همراه یک محیط غیرخطی کر درون یک کاواک دو مدل قرار دارد که در این مقاله تابش یک دیگر با اتم جفت‌شده g دو نرخ $[2]$ و $[3]$ را به یکدیگر جفت می‌کند. به علاوه این دو نرخ در (2) و (3) ام تحت

$\rho = \frac{1}{2} (\| \| + \| \|).$

است.
پیشینه کنفرانس انتیک و فتوتکنیک ایران به همراه انتشار گزارش‌های کنفرانس مهندسی و فناوری فتوتکنیک ایران

کاهش سهم جفت‌شادگی دو مد با اتم در تولید منیگرهای میدان تعداد فوتون‌های هر مد و به‌خصوص همبستگی میان دو مد کاهش می‌یابد. این در حالی است که اگر ضریب جفت‌شادگی غیرخطی دو مد به‌کارگیری (D(\delta_{12}) به‌شماره، همبستگی میان دو مد افزایش می‌یابد.

1- درهم تنیدگی بین مدل‌های درک از معیار‌های تفکیک‌پذیری حالت‌های گاوی، می‌توان با توجه به اصل عملکرد هیژنتیک دو مدل تولید ناشی از دو مدل قرار گرفته در سایر مدل‌ها را را به‌طور دقت جزئی حالت‌های گاوی در نظریت است. علی‌رغم این‌که واریانس آن‌ها محاسبه می‌شود بنابراین از لحاظ تاریخی closures معادلات (1) (به مدت زیر می‌توان به دست آورده.

\[\hat{U} = \left[\begin{array}{c} X_1 \end{array} \right] + 1 \left[\begin{array}{c} \hat{V}_1 \end{array} \right], \quad \hat{V} = \left[\begin{array}{c} Y_1 \end{array} \right] + 1 \left[\begin{array}{c} \hat{Y}_1 \end{array} \right]. \]

مطالعه با معیارهای حالت‌های گاوی در همبستگی میان دو مد درون کواکا و ضریب جفت‌شادگی غیرخطی میان دو مد درون کواکا است. همچنین این برابری جایی چنین است که می‌توان با انتخاب مناسب اندیس‌های محاسبه‌شده، دو مدل مشابه در نظریت بازبینی شود.

\[\Sigma = \left(\Delta U \right)^2 \left(\Delta V \right)^2 = 2(n + 2 + 1) \alpha^2 \beta - 4c \leq \alpha^2 + 1 \beta^2. \]

که در آن

\[a = \sqrt{2(n + 1)}, \quad n = \left(\alpha + \beta \right)^2 + 2, \quad \alpha = \left(\alpha + \beta \right)^2 + 2, \quad \beta = \left(\alpha + \beta \right)^2 + 2. \]

به این ترتیب ستونهای درهم‌تنیدگی برای دو میان‌داده می‌تواند تابشی به صورت زیر است

\[\gamma = \alpha + \beta - 1 \left(\alpha + \beta \right)^2 = 4 \left(\alpha + \beta \right)^2 - \left(\alpha + \beta \right)^2. \]

عبارت فوق نشان می‌دهد که سنجش درهم‌تنیدگی واگنه به تعداد فوتون‌ها و همبستگی میان دو مد است. در صورتی که سنجش درهم‌تنیدگی کوچکتر از یک باند میان دو مد درهم‌تنیده خواهد بود. از منحنی درهم‌تنیدگی برخی از وظایف جدایی‌برانگیزش دو مدل می‌تواند در شرایط بازنویسی (نکل) در می‌باید که درهم‌تنیدگی در شرایط بازنویسی (نکل) در می‌باید که درهم‌تنیدگی در شرایط بازنویسی (1) ایجاد می‌شود. منحنی ممکن درهم‌تنیدگی را در غیرشیء محیط غیرخطی کرک دها می‌دهد. منحنی خط

\[\frac{d}{dt} \rho_j = -i \delta_j + 2 \Delta \rho_j, \quad \rho_j = \left(\begin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \end{array} \right), \quad \Delta = \left(\begin{array}{cc} \delta_1 & \delta_2 \\ \delta_3 & \delta_4 \end{array} \right). \]

شکل 1: توزین از اتمه‌های همراه با غیرخطی‌کرک درون کواکا دو مدل.

با بکارگیری از معادله حکومت عملکرد گاگالی و ردقیری جزئی از حالت‌های اتم می‌توان ماتریس گاگالی میدان را به شکل زیر به دست آورد:

\[\frac{d}{dt} \rho_j = -i A_j + 2 \Delta \rho_j, \quad \rho_j = \left(\begin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \end{array} \right), \quad \Delta = \left(\begin{array}{cc} \delta_1 & \delta_2 \\ \delta_3 & \delta_4 \end{array} \right). \]

یکی از معیارهای تفکیک‌پذیری حالت‌های گاگالی معیار دولت است. همچنین A برای مثال جایی اشاره‌ای است که جفت‌شادگی غیرخطی میان دو مد شکل و می‌توان آن را با کاملاً محاسبه‌ای در نظریت انتخاب بازبینی کرد. معادلات حکومت غیرخطی میدان را از معادله (1) به صورت زیر می‌توان به دست آورد:

\[\frac{d}{dt} \rho_j = -i A_j + 2 \Delta \rho_j, \quad \rho_j = \left(\begin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \end{array} \right), \quad \Delta = \left(\begin{array}{cc} \delta_1 & \delta_2 \\ \delta_3 & \delta_4 \end{array} \right). \]

همچنین به این صورت جواب‌های معادلات (5) می‌تواند خواهند بود. برابری از انتخاب وادادگی گاگالی میان دو مد کوچک‌تر از انتخاب گاگالی غیرخطی کرک باشد. آنگاه اختلاف وادادگی گاگالی میان دو مد

\[\Delta S \left(\delta_j \right) = \delta_j + 2 \rho_j, \quad \rho_j = \left(\begin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \end{array} \right). \]

۶۶۳
چین افزایش درهمتبدیلی را به ازای عوامل اضافی نشان می‌دهد. منحنی خط نقاط چین به ازای تعداد مقادیر Δ_0 کاهش و به مقدار ثابثی می‌رسد.

شاکل 3: نمودار درهمتبدیلی برحسی Δ_0 برای مقادیر مختلف

$g_{12}^2 >D$ $g_{12}^2 <D$ $g_{12}^2 =D$

$\Omega = 50, \gamma_1 = 0.02, k_1 = 0.63, g = 10, \eta = 1, \Delta_0 = 0$

2- چلادنگی بین مدل

با انتخاب $a=1$ در رابطه‌های (7) و (8) بخش قبل. جمع واریانس‌ها به واریانس مشخصه چلادنگی بین مدل کاهش می‌یابد.

$$V = \langle (X_1 - X_2)^2 \rangle = \langle (Y_1 - Y_2)^2 \rangle = 2 \langle (a_1 a_2^*) \rangle + 1.$$ (11)

3- ترتیب گیری

با مطالعه نظری درهمتبدیلی و چلادنگی بین مدل جفت‌های اضافی و مدل میدان در حضور محوطه غیرخطی و هم‌وقتی خلاً الفانیا، نشان دادیم در حضور عوامل اختلاف (فرار فوتون ها خارج از کاواک)، در صورتی که احتمال جفت‌شدنی کر دو دم درون کاواک کوکچتر از جفت‌شدنی غیرخطی بین مدل در حضور عوامل اختلاف وادی‌گی میان دو مدل میدان و سه‌گانه جفت‌شدنی دو مدل با اتم را کاهش می‌دهد. به علاوه با افرازی هم‌میانگی بین مدل در حضور عوامل اختلاف وادی‌گی میان دو مدل میدان و سه‌گانه جفت‌شدنی دو مدل با اتم را کاهش می‌دهد. به علاوه با افرازی هم‌میانگی بین مدل در حضور عوامل اختلاف وادی‌گی میان دو مدل میدان و سه‌گانه جفت‌شدنی دو مدل با اتم را کاهش می‌دهد.

$$M = 2(\Delta \pm \Delta) + 1.$$ (3)

4- نوشته‌گزاری

نتیجه‌گیری چیزی در حضور $D > g_{12}$ به ازای عوامل اضافی نشان می‌دهد. منحنی خط نقاط چین به ازای $g_{12}^2 >D$ $g_{12}^2 <D$ $g_{12}^2 =D$ کاهش و به مقدار ثابثی می‌رسد.

شاکل 2: نمودار درهمتبدیلی برحسی Δ_0 برای مقادیر مختلف

$\Omega = 50, \gamma_1 = 0.02, k_1 = 0.63, g = 10, \eta = 1, \Delta_0 = 0$

3- چلادنگی بین مدل

با انتخاب $a=1$ در رابطه‌های (7) و (8) بخش قبل. جمع واریانس‌ها به واریانس مشخصه چلادنگی بین مدل کاهش می‌یابد.

$$V = \langle (X_1 - X_2)^2 \rangle = \langle (Y_1 - Y_2)^2 \rangle = 2 \langle (a_1 a_2^*) \rangle + 1.$$ (11)

در صورتی که $V < 1$ چلادنگی بین دو مدل حاصل می‌شود. در حد $V \rightarrow 0$ این مقدار به‌شیوه می‌شود. از منحنی چلادنگی برحس فاصله جدایی ترازهای بانگشته (شکل 3) در مدل با مدل هم‌ناثن درهمتبدیلی در شرایط بازآوایی چلادنگی موجود دارد. منحنی خط نقطه چین و خط چنین به ترتیب نشان می‌دهد چلادنگی به ازای $D > g_{12}$ افزایش و به ازای $g_{12}^2 >D$ کاهش می‌یابد.

$$M = 2(\Delta \pm \Delta) + 1.$$ (3)

5- مراحل