بررسی ویژگی‌های غیرکلاسیک میدان تابشی در سامانه‌ی برهم‌کنشی اتم–میدان در حضور غیرخطیت کر و همودوسی خلاً القائیده

ژهرا موسوی‌مدني ۱ و محمدمحسن نادری ۲

گروه فیزیک، دانشکده علوم، دانشگاه اصفهان، خیابان هزاری‌جریب، اصفهان
گروه پژوهشی ایتیکی کوانتومی، گروه فیزیک، دانشگاه اصفهان، اصفهان

چکیده – در این مقاله، کنترل درهم‌تنیدگی و چلندگی حالت ایستای میان بدون درون کاواک را توسط همودوسی حاصل از فرآیند گسیل خودیدخود در اتم سه ترازی و با حضور غیرخطیت کر بررسی می‌کنیم. نشان می‌دهیم به ازای برخی مقادیر ثابت شدگی غیرخطیت کر، همبستگی بین مدت در حضور عوامل الالاف افزایش می‌یابد. به علاوه، نشان می‌دهیم درهم‌تنیدگی و چلندگی بین مدت در شرایط بازآوایی میان بسامد میدان لیزی و بسامد گذار اتمی نیز افزایش می‌یابد.

کلید واژه‌های وارد شده- چلندگی، درهم‌تنیدگی، غیرخطیت کر، همودوسی حاصل از فرآیند گسیل خود به خود.

Investigation of Non-Classical Properties of the Radiation Field in the Interacting Atom-Field System in the Presence of Kerr Nonlinearity and Vacuum-Induced Coherence

Zahra Musavi Madani¹ and Mohammad Hossein Naderi²

¹Department of physics, University of Isfahan, Isfahan, Iran
²Quantum Optics Group, Department of Physics, University of Isfahan, Isfahan, Iran

Abstract- In this paper, we study the possibility of controlling the stationary entanglement and squeezing between the two modes of a cavity by spontaneously generated coherence in the three level atoms in the presence of the Kerr nonlinearity. We show that the correlation between the two modes increases for some values of the nonlinearity coupling parameter in the presence of dissipative processes. In addition, the entanglement and the squeezing between the two modes increase when the resonance condition between the atom and the field is fulfilled.

Keywords: squeezing, entanglement, Kerr nonlinearity, spontaneously generated coherence.
برای پیش‌کش یک میدان لیزی با سامد ω_L و سامد رای 2 Ω قرار گیرد. تحلیل زمانی ماتریس چگالی کل سامانه دریک دستگاه چرخشی نسبت به سامد میدان لیزی با صورت زیر است

$$\frac{d}{dt} \rho = -\varepsilon[H_L + H_v + V_{ext}, \rho] + L_r \rho + L_a \rho.$$
(1)

که در آن

$$H_L = -\delta a^\dagger a + \delta a^\dagger a,$$
$$H_{v,f} = (\Delta_L + \Delta_v) A_1 + \Delta_A A_{22} - \Omega A_{13} + \hbar \epsilon,$$
$$V = (a_i + \alpha_i) g A_{13} + \hbar \epsilon,$$
$$V_{ext} = g \rho a_i^\dagger a_j a_k a_l.$$
(2)

و

$$L_r \rho = \sum_{i<\alpha} k_i (2a_i^\dagger a_i - a_i^\dagger a_i - \rho - \rho a_i^\dagger a_i),$$
$$L_a \rho = \gamma [A_{11}, \rho A_{11}] + \gamma [A_{12}, \rho A_{12}] + (\gamma A_{11}, \rho A_{11}) + \gamma [A_{12}, \rho A_{12}].$$
(3)

در این روابط h با h به ترتیب هاملتونی میدان، هاملتونی V_{Kerr} و V برهمکنش آتی با میدان لیزی، هاملتونی برهمکنش میدان با محیط غیرخطی، انتقال میدان درون کوکاک و سامانه انتی را نشان می‌دهد. به ترتیب آهنگ غیبی خودیخود از جفت‌های آزاد و باران‌های هم‌دوره است. در ادامه فرض شده که سامت‌گری گشتاورهای دوقطبی a_2 و a_1 و عملکردهای g_1 و g_2 عملکرهای نابودی و مقدار سهمی ناشی از تغییر فوتون‌های هر مدت بسیار نامحدود از دید چهارمیژنگسازی بر اساس باکتریا دستگاه دیجیتالیک و راه‌حل دنبالگری را به دست می‌آورد. نشان می‌دهد برای دقیقه (D) به دقت $D \approx 10^3$ و در شرایط بازاری در نتیجه دنبالگری و چالشگر یک مشو.

1- مقدمه

پایه حالت‌های درهم‌بندی گاسی بی به‌وزه حالت خلا درالتونی به عنوان یک گام اساسی در بردارش اطلاعات کوانتومی به شمار می‌آید. تولید این حالت‌ها در سامانه‌های الکترونیک کوانتومی درون کواک اهمیت ویژه برخوردار است. بر این اساس، جفت‌شدنی غیرخطی میدان مداری درون کواک، برای تولید این حالت‌ها از طریق جفت‌شدن اساسی از اتی‌ها غیر به‌عمتی (1) و یا یک محیط غیرخطی (2) امکان‌پذیر است. در حال حاضر از یک جفت‌شدنی که برای تحقق این هدف مورد تحقیق مطرح شده است، پیدایش هم‌دوره حالت‌های گلیمی حاصل از گلیم‌های هدایتی در خلا (Gap خلا القایی) است.[4] مطالعات نظری این زمینه نشان می‌دهد در بروز تداخل کوانتومی میان مسیرهای گذار در سامانه‌های اوست در میان رفتار امکان تولید حالت‌های جفتِ‌شدنی در شرایط بازاری وجود دارد.

در این مقاله به بررسی امکان کنترل و تقویت ویژگی‌های غیرکلاسیکی میدان تابشی در حضور یک محیط غیرخطی کرون کواک و هم‌دوره خلا القایی می‌ پردازد. با استفاده از مدل‌های حالت‌های همبستگی میان دو و تعداد فوتون‌های هر مدت را به دست می‌آوریم. نشان می‌دهیم در شرایط استرتویی که ضریب جفت‌شدنی غیرخطی دو میدان کرون (D) (باشد همبستگی) میان دو افرادی می‌باشد و هم‌دوره در مقدار نسبی به دید چهارمیژنگسازی و در نتیجه دنبالگری را به دست می‌آورد. نشان می‌دهیم برای دقیقه (D) به دقت $D \approx 10^3$ و در شرایط بازاری در نتیجه دنبالگری و چالشگر یک مشو.

2- الگوسازی فیزیکی

مطابقت شکل 1، سامانه‌ای مشابه یک اتم سه‌تری با پیکربندی V به‌وزه یک محیط غیرخطی کرون یک کواک در مدت قرار دارد که در این مدت میدان تابشی با نتیجه جفت‌شدنی g دو نرده Ω_2 و Ω_3 را به یک‌دیگر جفت‌می‌کند. به علاوه، این دو نرده Ω_2 و Ω_3 اتم تحت
کاهش سهم جفت‌شناختی دو ماد با اتم در تولید متغیرهای میدان تعداد فوتون‌های هر مولکول از خصوصیتهای میان دو ماد کاهش می‌یابد. این در حالی‌است که اگر ضریب جفت‌شناختی غیرخطی دو مولکول از نسبت جفت‌شناختی غیرخطی کر (Δg) باشد همبستگی میان دو ماد آزاد می‌شود.

۱- درهم تنی‌گی بین میدی

یکی از معیار های تفکیک‌پذیر حالت‌های گاوسی‌ی می‌باشد. در حالی‌که دو اتم عضوی برای ترکیب خطی جمله‌ها کوادراتوری استخراج یکی در نظر می‌گیرید که در نظر نگرفته شود، کافی برای جدایی‌بری حالت‌های گاوسی گردید. عملکرد هر واریانس آنها محاسبه می‌شود مبنای از

\[U = |U|X, Y, Z = |V|Y, Z |V|X, V^3 \]

مطبق با معیار دوان حالت‌های گاوسی درهم‌تینیده هستند اگر و تنها اگر جمع واریانس‌ها رابطه زیر را بطور مستقل کند

\[\Sigma = \left((\Delta U)^3 \right) + \left((\Delta V)^3 \right) = 2n a^3 + 2m b^3 - 4c \leq a^2 + 1/2 a^2 \]

که در آن

\[a = \sqrt{(2m-1) / (2n+1)}, \quad n = (a_i a_{-i})^2 + 1/2, \]

\[\tau = \Sigma - a^3 - 1 / a^2 = 4 \left(a_i a_{-i} - \left| a_{ij} \right| \right) \]

به این ترتیب سنجش درهم‌تینیدگی برای دو ماد میدان نابه‌ای به صورت زیر است

\[\frac{d}{d \rho} \left(\frac{d \rho}{d \rho} \right) + \frac{2 D (\rho_{ij} + \rho_{-ij}) - 2 \lambda (\rho_{ij})}{(\rho_{ij} + \rho_{-ij} + \rho_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} = \frac{64 (\delta_{ij} - \delta_{ij} - \delta_{ij} + \delta_{ij})}{(D + D + \lambda_{ij} + \lambda_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} \]

که به صورت زیر به دست آورد

\[\frac{d}{d \rho} \left(\frac{d \rho}{d \rho} \right) + \frac{2 D (\rho_{ij} + \rho_{-ij}) - 2 \lambda (\rho_{ij})}{(\rho_{ij} + \rho_{-ij} + \rho_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} = \frac{64 (\delta_{ij} - \delta_{ij} - \delta_{ij} + \delta_{ij})}{(D + D + \lambda_{ij} + \lambda_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} \]

\[\Delta g = \frac{\delta_{ij} - \delta_{ij} - \delta_{ij} + \delta_{ij}}{(D + D + \lambda_{ij} + \lambda_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} \]

\[\Delta g = \frac{\delta_{ij} - \delta_{ij} - \delta_{ij} + \delta_{ij}}{(D + D + \lambda_{ij} + \lambda_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} \]

\[\Delta g = \frac{\delta_{ij} - \delta_{ij} - \delta_{ij} + \delta_{ij}}{(D + D + \lambda_{ij} + \lambda_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} \]

\[\Delta g = \frac{\delta_{ij} - \delta_{ij} - \delta_{ij} + \delta_{ij}}{(D + D + \lambda_{ij} + \lambda_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} \]

\[\Delta g = \frac{\delta_{ij} - \delta_{ij} - \delta_{ij} + \delta_{ij}}{(D + D + \lambda_{ij} + \lambda_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} \]

\[\Delta g = \frac{\delta_{ij} - \delta_{ij} - \delta_{ij} + \delta_{ij}}{(D + D + \lambda_{ij} + \lambda_{ij} / (2D + \lambda_{ij} + \rho_{ij} / (2D + \lambda_{ij}))))} \]
دیگر با مطالعه نظری درهم‌تبدیلی و چالندی‌گی بین مدل حالت ایستایی دو مد میدان در حضور محیط غیرخیّمی کر و هم‌ریختی خلاً الکترود نشان داده‌م در حضور عوامل اتلافی (قارن فوتون‌ها یا خارج از کاواکی)، در صورتی که احتمال جفت‌شدنگی کر با دو دو درون کاواکی کوکچتی از جفت‌شدنی غیرخیّمی بین مدلی ناشده‌метی‌گی بین g_{12} > D مدل افزایش می‌یابد. در غیر اینصورت اکثر و آنکه جفت‌شدنی می‌باشد. به علاوه با اکثری‌هم‌ریختی بین مدلی، درهم‌تبدیلی و چالندی‌گی بین مدلی در شرایط بازآوری (A_i = \theta_i) در نتیجه جفت‌شدنی غیرخیّمی کر به عنوان یک پارامتر کنترل، نتیجه‌ای در برابر مقادیر ویژگی‌های غیرکلاسیکی میدان را افزایش می‌دهد.

سیاست‌گذاری
نویسنده‌گان نشان‌دادند که با از معاونت حضوریان تکمیلی دانشگاه اصفهان اعلام می‌دارند.

مراجع