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یف کننده    - چکیده  لی توصـ ت. معادله اصـ ده اسـ فتاده در یک کاوك اپتیکی تک مد در حالت پایا بررسـی شـ ه دام ا امانه  رفتار یک اتم دو ترازي ب در  سـ
یمه کلا- پایه هاي اتم  ده است. رفتارهاي ن ز لحاظ عددي حل شـ امانه    سیکی و کوانتومی درکاواك ا تم سـ بر اساس معادلات نوشته شده قابل  کاواك  - ا

ز معادله اصلی، استخرا  تایج شبیه سازي هاي منتج شده ا  این دو رفتار مجزا را تایید می کند. صحت    ج می باشد. ن

ا  اتم دو ترازي، فوتون پاد  - کلید واژه  اپتیکی،يخوشه   .ماتریس چگالیلیزینگ،  ، کاواك 
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Abstract- The behavior of a two-level atom trapped in a single-mode optical cavity is examined in the steady state. The 
describing master equation of the system is numerically solved in the atom-cavity basis. The semiclassical and quantum 
treatments in the atom-cavity system can be derived based on the written equations. The outcomes of the simulations 
resulting from the master equation confirm the accuracy of these two separate behaviors. 
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1. Introduction 
In completing the topics given in [1], another 
method in solving the master equation is mentioned 
here. In the previous work [1] to solve the 
describing master equation of the atom-cavity 
system, a combination of the continued fractions 
and quantum optics toolbox methods was used, but 
here to solve the same equation, the method of 
solving equations in the atom-cavity basis has been 
utilized. Due to the lack of space, not all content can 
be illustrated here and [1] can be referred for a more 
complete detail. 

2. Model 
A two-level atom enclosed in a single-mode optical 
cavity. The 1-2 atomic transition is incoherently 
pumped at the rate of ′Γ . The atom-cavity coupling 
constant is g  and the 1-2 atomic transition 
frequency is at the resonance with the cavity one. 
The spontaneous emission coefficient from level 2 
to 1 is equal to γ  and the cavity decay rate is κ . 
The master equation of the atom-cavity system is: 
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by using the master equation, the temporal evolution 
of the underneath quantities can be written as: 

†
11 12 21 11 22

ˆ ˆ ,A g A a g A a A Aγ′= − − −Γ +       (2) 

( )12 11 22 12
ˆ ˆ 0.5 ,A g A a g A a Aγ′= − − Γ +      (3) 

†
22 21 12 11 22

ˆ ˆ ,A g A a g A a A Aγ′= + + Γ −          (4) 

12 0.5 ,gAα κα= − −                                                           (5) 

in the semiclassical approximation in which the 
correlations of the atom and cavity can be ignored, 
the above equations take this form: 

11 12 21 11 22 ,A gA gA A Aα α γ∗ ′= − − −Γ +                  (6) 

( )12 11 22 120.5 ,A gA gA Aα α γ′= − − Γ +                 (7) 

22 21 12 11 22 ,A gA gA A Aα α γ∗ ′= + + Γ −                     (8) 

12 0.5 ,gAα κα= − −                                                           (9) 

by replacing 21 12A A=  and α α∗ =  in the above 

equations, we will have: 

11 12 11 222 ,A gA A Aα γ′= − −Γ +                                  (10) 

( )12 11 22 120.5 ,A gA gA Aα α γ′= − − Γ +               (11) 

22 12 11 222 ,A gA A Aα γ′= + Γ −                                     (12) 

12 0.5 ,gAα κα= − −                                                        (13) 

by eliminating the first level population, we have: 

( )12 22 122 0.5 ,A g gA Aα α γ′= − − Γ +                  (14) 

( )22 12 222 ,A gA Aα γ′ ′= + Γ − Γ +                           (15) 

12 0.5 ,gAα κα= − −                                                        (16) 

after solving the above equations in the steady state, 
we arrive at 0m =  or: 

( ) ( )2 1 10.5 0.5 1 0.5 1 ,A Am p N p N− −= − + − − + (17) 

in the above relations, these parameters 
( )2/ 4AN gκγ= , ( )2 2/ 4N gγ γ= , /p γ′= Γ , 

/m n Nγ=  and 2n α=  are applied. The 
numerical value of 0.05AN =  is applied in all 
diagrams in the subsequent sections. 

3. Atom-Cavity Basis 
To compare the semiclassical pattern with a 
completely quantum model, we examine the 
behaviour of the system at an arbitrary pumping 

11.5p p= , where 1p  is the smaller root of Eq. (17) 

which reveals the laser threshold. In the atom-cavity 
basis, the temporal evolution of the different 
elements of the density matrix are obtained from: 
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which form a closed and infinite set of equations. 
To solve these equations in the steady state, by 
truncating these equations in an arbitrary n  such as 
N , those can be brought into Ax b=  and finally 

one can obtain the unknown matrix x . When the 
answer of x  is acceptable that its values do not 
change for 1N −  and 1N + . By specifying the 
matrix x , the following physical quantities can be 
obtained: 

22 22
ˆ ,A A=                                                                          (21) 

† / ,m a a Nγ=                                                                   (22) 

( ) ( )
2 22 † 2 †0 / ,g a a a a=                                          (23) 

which indicates the second level population, scaled 
photon number and second-order coherence 
function at zero-time delay, respectively. In Fig. 1, 
the scaled photon number curves are plotted in two 
separate intervals. The depicted results show that for 
large Nγ ‘s the semiclassical behaviours prevail in 

the system and with decreasing Nγ , the deviation 

from the semiclassical case increases and the 
quantum processes are expected to appear in the 
system.

  

Fig. 1: The curves of m  for different Nγ ‘s 
along with the semiclassical case in terms of p  

at two various intervals  

In Fig. 2, the second-order coherence function is 
used to determine the behaviour of the emitted light. 
For the largest Nγ , at below threshold, the radiated 

light is thermal and becomes coherent at above 
threshold and gets thermal again as the pump 
increases further. As Nγ  decreases the light 

becomes bunched. For the lowest Nγ  and in the 

weak driving limit, the light denotes the 
antibunching characteristic. Therefore, the results of 
this section display that for large enough Nγ ’s, the 

behaviours of the semiclassical laser emerge in the 
system and for small enough Nγ ‘s and in the weak 

driving limit, the antibunched light is emitted which 
is a quantum light. The drawn outcomes in Figs. 1 
and 2 are in complete agreement with those of [1].

  
Fig. 2: The graphs of ( ) ( )2 0g  for several Nγ ‘s 

versus p  in two different domains  

4. Photon Antibunching 
Here we want to see that what quantum effects 
appear in the system for small Nγ ‘s. In the weak 

driving limit γ′Γ   which is equivalent to 1p  , 
Eqs. (18) to (20) can be expanded to the second 
order of ′Γ . Using these equations, one can say that 

,1; ,1n nρ  and 1,2; ,1n nρ −  are of the order of n  with 

respect to ′Γ  and ,2; ,2n nρ  is of the order of 1n + . 

By opening the given equations to the leading order: 

0,1;0,1 0,1;0,1 0,2;0,2 1,1;1,1 ,ρ ρ γρ κρ′= −Γ + +                        (24) 

1,1;1,1 0,2;1,1 1,1;0,2 1,1;1,1 ,g gρ ρ ρ κρ= − − −                         (25) 

2,1;2,1 1,2;2,1 2,1;1,2 2,1;2,12 2 2 ,g gρ ρ ρ κρ= − − −       (26) 

( )0,2;1,1 1,1;1,1 0,2;0,2 0,2;1,10.5 ,g gρ ρ ρ γ κ ρ= − − +     (27) 
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which from a closed set of equations. In the weak 
driving limit, the population of the first level to the 
first order of ′Γ  can be written as: 

0,1;0,1 1,1;1,1 1,ρ ρ+ =                                                             (31) 

by solving these equations in the steady state: 
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now the second level population, second-order 
coherence function to the leading order are derived 
from: 

( )2

22 2
,A A

A A A

N N N N p
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N N N N N N p
γ γ

γ γ γ
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+ + + +


                      (36) 
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   (37) 

which relation (37) is equal to that one written in 
[1]. Now the above functions can be plotted under 

these conditions 1AN   and 2
AN Nγ  , although 

to apply these conditions the two variables Taylor 
expansion method can be used similar to that of 
used in [1], but here this method is not applied since 
the mentioned approximations show their effects 
directly on the drawn curves. In Fig. 3(a), the curves 
of ( ) ( )2 0g  are depicted for different Nγ ‘s against 

p . The dashed curves are plotted according to      

Eq. (23) and the solid lines are drawn based on Eq. 
(37). With the decline of Nγ , the obtained results 

become closer and closer to those of the simulations 
and stronger antibunching phenomenon occurs. 

  
Fig. 3: (a) The emergence of photon 

antibunching effects, (b) The population of the 
second atomic level in two distinct cases for 

small Nγ ‘s in terms of p    

In Fig. 3(b), the 22A  curves are drawn for some Nγ

‘s versus p . The solid lines are plotted according to 
Eq. (36) and the dashed diagrams are depicted based 
on Eq. (21). By reducing Nγ , the achieved results 

become close to the simulation ones and this 
indicating that the applied approximations in this 
section are acceptable.  

5. Conclusions 
In this work, the different behaviours of the two-
level atom enclosed in the single-mode optical 
cavity are theoretically examined. The master 
equation describing the atom-cavity system is 
solved numerically in the density matrix basis. The 
results show that for large Nγ ‘s, the system 

unravels the behaviour of the semiclassical laser, 
and for small Nγ ‘s and in the weak driving limit, 

the photon antibunching quantum feature appears in 
the system. The brought results appropriately verify 
the obtained findings in [1] which applied other 
approaches to solve the master equation. 
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