بررسی اثر فرآیندهای انتقال بار در عملکرد درمان‌های فوتودینامیکی

میثم عبدالحسین زاده و مهشید جلالی کمالی

چکیده - فوتودینامیک تراپی یک روش مورد بای درمان انواع تومورها و بیماری‌های پوستی است. در این مطالعه با تکمیل مدل‌های دینامیکی قبلاً که صرف توصیف کنتنه فرآیندهای انتقال انرژی و تولید آکسیژن واکنشی در فوتودینامیک تراپی بودند، امکان بررسی فرآیندهای انتقال بار و تولید رادیکال‌های آزاد و تأثیر آنها بر روی مکان سلولی و بارزه در فوتودینامیک تراپی فراهم شده است. در این مدل با نوشتن معادلات آهنگ، تغییرات غلظت مولکول‌های دخیل در این فرآیندها با زمان بررسی شده است. نتایج حاصل از حل معادلات نشان می‌دهد که اگرچه فرآیندهای انتقال انرژی در پاساوی دارند اما نمی‌توان تأثیر فرآیندهای انتقال بار را بر پازدگی کل نادیده گرفت.

کلیدواژه‌ها: فوتودینامیک تراپی، حساس‌گر نوری، انتقال بار، انتقال انرژی، مدل‌سازی ریاضی.

The Effect of Charge Transfer Processes on Photodynamic Therapy Mechanism

Meisam Abdolhosseinzadeh¹, Mahshid Jalal-Kamali²

¹Department of Photonics, Science and Modern Technology Faculty, Graduate University of Advanced Technology, Kerman, Iran
²Department of Semiconductors, Photonic Research Center, Graduate University of Advanced Technology, Kerman, Iran

Abstract - Photodynamic therapy is an effective treatment for a variety of tumors and skin diseases. In this paper, the study of the charge transfer processes, the generation of free radicals and their impact on cell death and total efficiency of photodynamic therapy is made possible by completing the previous dynamic models that only describe the energy transfer processes and the generation of reactive oxygen in photodynamic therapy. In the present model the concentration of molecules involved in these processes was studied as a function of time by considering the rate equations. The results show that although the energy transfer processes have a significant impact on total efficiency of Photodynamic therapy, but we can’t ignore the effect of charge transfer processes on total efficiency.

Keywords: Photodynamic Therapy, Photosensitizer, Charge Transfer, Energy Transfer, Mathematical Modeling.
است. اما مدل سازی عددی فرآیندهای دینامیکی هنوز به‌عنوان یک چالش جدی پیش روی این روش قرار دارد. یک مدل کامل که به‌کمک به درک درست فرآیندهای PDT اساسی می‌تواند به‌پیشوداره باشد. برای استفاده PDT تأثیر به سازگاری داشته باشد.

مدل‌های واقعی مفاهیم برای توضیح پیچیده تولید و مصرف اکسیژن و بافت در فرآیندهای دینامیکی ارائه شده است. در همان یک مدل با در نظر گرفتن یک حساسیت خاص مانند فوتوفتوسنتزی در آن فرآیندهای غالب فرآیندهای نوع دوم می‌باشد و از فرآیندهای نوع اول چشم‌پوشی هستند. با توجه به اینکه در بی خریداری و با اکسیژن باکتریوکرین فرآیندهای نوع اول تا حدود 30 تا 40 نش دارد، دیگر چشم‌پوشی از این فرآیندها جای نمی‌یابد. در این تحقیق، بر اساس یک مدل کینئیکی، با فرونز و بافت‌های مربوط به فرآیندهای نوع اول، امکان بررسی تأثیر ایجاد اکسیژن نوع دوم روی فرآیندهای دینامیکی را در معادلات دفرنسلی خیص نیز تدوین شده که که در پی می‌آید و باعث افزایش مختلف سیستم‌های بررسی می‌کند.

2 - مدل‌سازی عددی

مدل‌های قابل ارائه هر اثر مطلوع ریفر فرآیندهای پرهمکشی‌های مولکول‌های در فرآیندهای نوع دوم، غلتک مولکول‌های گذاری در دو حالت پایه و پراکنده‌ها را به‌عنوان تابعی از زمان وقیتی و با استفاده از معادلات آهنگ کوئل شده به‌دست می‌آورد (معادلات 1 تا 6).

برای افزودن فرآیندهای نوع اول و بررسی نقش رادیکال‌های اکسیژن در بازدآوری کل فرآیندهای آمونیاک و مولکول‌های می‌باشد و پرهمکشی‌های باکتریوکرین با اکسیژن و بافت‌های دیده می‌باشد و از رادیکال‌های اکسیژن و سیستم‌های به دلیههای کرده‌ایم (معادلات 7 تا 11)

در معادلات اگه‌های نگاره تیز ساختاری حساسیت نوع دوم در حالت پایه و مولکول‌های اکسیژن در حالت پایه ساختاری و حالت پراکنده‌ها گیاهان ۴) و ۵) نشان می‌دهند با اکسیژن یگاهه و بیومولکول‌های واکنش‌دهنده با اکسیژن یگاهه و با وجود تغییرات سیستم‌های متفاوت آزمایشگاهی و بازیلی انجام شده PDT
در معادلات فوق، به ترتیب k_{11}، k_{12}، k_{21}، k_{22}، k_{p} و k_{c} هنگام انتقال الکترون از حساسیت R_{S} به اکسیژن O_{2} و به ترتیب برای O_{2} و O_{3}، T و S_{i}، r به ترتیب با S_{0} و T به دست آمده است. k_{11} به ترتیب به عنوان کننده اکسیژن و کانیو رادیکال O_{2} به ترتیب دو الکترون و اکسیژن در حال حاضر در می‌آید. k_{12} به ترتیب به عنوان کانیو رادیکال O_{2} به ترتیب دو الکترون و اکسیژن در حال حاضر در می‌آید. k_{21} و k_{22} به ترتیب به عنوان کانیو رادیکال O_{3} به ترتیب دو الکترون و اکسیژن در حال حاضر در می‌آید. k_{p} به ترتیب به عنوان دو الکترون و اکسیژن در حال حاضر در می‌آید. k_{c} به ترتیب به عنوان دو الکترون و اکسیژن در حال حاضر در می‌آید.

3- نتایج

برای حل معادلات مذکور از بسته نرم‌افزاری Octave استفاده شد. مولکول $[R_{i}]$، $[S_{i}]$ و $[O_{2}]$ از k_{11} و k_{12} با استفاده از معادلات (1) از S_{0} به ترتیب به عنوان کانیو رادیکال O_{2} به ترتیب دو الکترون و اکسیژن در حال حاضر در می‌آید. k_{22} به ترتیب به عنوان دو الکترون و اکسیژن در حال حاضر در می‌آید. k_{12} به ترتیب به عنوان دو الکترون و اکسیژن در حال حاضر در می‌آید. k_{22} به ترتیب به عنوان دو الکترون و اکسیژن در حال حاضر در می‌آید. k_{p} به ترتیب به عنوان دو الکترون و اکسیژن در حال حاضر در می‌آید. k_{c} به ترتیب به عنوان دو الکترون و اکسیژن در حال حاضر در می‌آید.

جدول 1: مقادیر مدرک ثابت استفاده شده در معادلات.

<table>
<thead>
<tr>
<th>k_{11}</th>
<th>k_{12}</th>
<th>k_{21}</th>
<th>k_{22}</th>
<th>k_{p}</th>
<th>k_{c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/10$</td>
<td>$1/10$</td>
<td>$1/10$</td>
<td>$1/10$</td>
<td>$1/10$</td>
<td>$1/10$</td>
</tr>
</tbody>
</table>

* مقادیر چگالی فوتونی نور فردی (P) را از $\rho = 5 \times 10^3$ فوتون در هر سانتری متر مکعب انقباض کرده‌ایم. غلظت‌های اولیه رادیکال‌های آزاد و اکسیژن و اکسیژن متاپروتون تا بتوان رفتار تک‌کاننک را جدایگان بررسی کرد. در عمل برخی از این یافته‌ها می‌تواند با در نظر گرفتن طرفداره و هم پوشانی با وجود آن در کنار محاسبات وارد نمی‌کند. زمان نوردهی ۲۰۰۰ ثانیه در نظر گرفته شده است و معادلات این برای حالت زمانی حیاتی ایجاد می‌شوند.

$V \rho \sigma(r) = \sum \psi$ مسئله شده است که V سرعت نور در بافت، ψ سطح مقطع جذب نور می‌باشد.

\[
\frac{d}{dt} [S_0] = -V \rho \sigma(r) [S_0] + \frac{\eta_0}{r_1} [S_1] + \frac{\eta_1}{r_3} [T] \quad (1)
\]

\[
- k_{12} [O_2] [S_0] + k_{22} [T] \frac{[O_2]}{r_3}
\]

\[
+ k_{p} [R_1] [Ps^+] \quad (2)
\]

\[
\frac{d}{dt} [S_1] = V \rho \sigma(r) [S_0] - \frac{\eta_0}{r_1} [S_1] - \frac{\eta_1}{r_3} [S_1] \quad (3)
\]

\[
\frac{d}{dt} [T] = \frac{\eta_1}{r_3} [S_1] - \frac{\eta_0}{r_1} [T] - k_{12} [T] \frac{[O_2]}{r_3}
\]

\[
- k_{p} [O_2] [S_1] - k_{c} [R_1] [O_2] \quad (4)
\]

\[
- k_{12} [T] \frac{[O_2]}{r_3} - k_{c} [O_2] [R_1] + k_{c} \frac{[O_2]}{r_3} [C] \quad (5)
\]

\[
\frac{d}{dt} [R_2] = U_2 - k_{c} [R_2] [O_2] \quad (6)
\]

\[
\frac{d}{dt} [Ps^+] = k_{12} [T] [O_2] - k_{p} [Ps^+] [R_1] \quad (7)
\]

\[
\frac{d}{dt} [O_2^-] = k_{12} [T] [O_2] - k_{c} [O_2] [R_1] - k_{c} [O_2] [R_1] \quad (8)
\]

\[
\frac{d}{dt} [R_1] = U_1 - k_{c} [R_1] [O_2^-] [R_1] \quad (9)
\]

\[
\frac{d}{dt} [R_2] = U_2 - k_{c} [Ps^+] [R_2] \quad (10)
\]

\[
\frac{d}{dt} [R_2^+] = k_{c} [Ps^+] [R_2] - k_{c} [O_2^+] [R_2] \quad (11)
\]
حساسیت نوری بیومولکولهای و اکسیژن مولکولی به
صورت مقداری معنی‌دار شده است.

شکل ۱: نمودار تغییرات غلظت بیومولکولهای و اکسیژن مولکولی بر حسب زمان.

شکل ۲: نمودار نتایج حاصل از نظر گرفتن همزمان معمدات مربوط به انقلال اثر و انقلال بار نشان می‌دهد که فراپدیده‌ای نوع اول نیز در فنودنامیک‌ترین مؤثر مثبت آهنگ انقلال اثر در حل معادلات ۱، ۱۱ ۹ ۰ در ۱۱ نفیس کلیدی دارن. تغییر حساسیتی نوری در نتیجه تغییر آهنگ انقلال اثر و بار می‌تواند نتایج متغیری داشته باشد.