Experimental study of the effect of diaphragm thickness and cavity length on Fabry-Perot optical fiber sensor for gas pressure measurement

Laser and Optics Research Center, Imam Hossein University, Tehran, Iran.

Abstract- In this paper, an interfering point optical fiber sensor is introduced to study the pressure of various argon, oxygen and nitrogen gases. The sensor probe is made with air cavity and with different lengths, and also a suitable diaphragm with different thicknesses is considered in order to achieve the optimal thickness and length of the Fabry-Perot cavity. PVC material is used for sensor layer, and a gas pressure sensor sensor setup was set up in the laboratory. The effect of diaphragm thickness and cavity length as two important parameters on the sensitivity of gas pressure sensor has been investigated. In the laboratory for gas pressure tests, diaphragm thicknesses of 28, 42, 56, 70 and 84 μm, the cavity lengths are 0.3, 0.55, 0.85, 1 and 1.25 mm and the compression range is 20 to 80 mbar. The results show that by reducing the diaphragm thickness and also reducing the cavity length, the sensitivity of the sensor increases.

Keywords: Optical fiber; Fabry-Perot sensor; diaphragm thickness; cavity length

farzadbashiry0626@gmail.com
1- مقدمه

از حسگرهای تار نوری ضخامت باربری کمیتهای فیزیکی استفاده می‌شود. حسگرهای تار نوری گوناگونی برای کاربردهای مختلف طراحی و بشرحی شده‌اند. یکی از جالب‌ترین آنها، حسگرهای مبتکری بر تداخل سنجی بوده و انتخاب مختلفی از فابری-پرو [1] ساختگی و مانند پرنده دراز که در بین آنها حسگر مبتکری بر تداخل سنج فابری-پرو نسبت به سایر تداخل سنج‌ها ساختاری ساده‌تر و فشرده‌تر دارد [2]. حسگر تار نوری مبتکری بر تداخل سنج فابری-پرو (FPI) یک حسگر دیافراگمی است که در ساخت سیستم‌های طراحی خوب، پاسخ دهی سریع و دقیقه بالا بوده و برای سنجش فشار [3]، نصب و به‌کار می‌رود. در این تحقیق، هدف ما بررسی حسگر تار نوری فابری-پرو برای گازهای آپرول، اکسیژن و نیترژن است. در این راستا حسگر فابری-پرو با طراحی جدید کاواک در آزمایشگاه ساخته شده و از پروپار دیافراگم استفاده شده است.

که در آن تأثیر ضخامت دیافراگم و همچنین طول کاواک بر حساسیت حسگر مورد بررسی قرار گرفته است.

2- تئوری حسگر

از جمله پارامترهای مؤثر در حساسیت حسگرهای فابری-پرو، ضخامت کاواک فابری-پرو می‌باشد. حساسیت حسگر به‌همانی جابجایی دیافراگم مستقیماً دارد. در واقع چه ضخامت دیافراگم کمتر باشد، بیشتر آن میزان جابجایی دیافراگم حسگر فابری-پرو در اثر فشار گاز اعماق به‌ویژه خواهد بود. این موضوع بهصورت رابطه و شکل (1) در زیر بیان می‌شود:

![شکل 1- شماتیک تداخل سنج فابری-پرو دیافراگمی](image)

\[w_0 = \frac{3(1-\mu^2)pa^4}{16\pi h} \]

که در آن \(P \) فشار نرمال، \(a \) ضخامت کاواک، \(h \) ضخامت دیافراگم، \(E \) مدل یانکی دیافراگم، \(\mu \) نسبت بوسران دیافراگم و \(r \) فصله از مرکز صفحه دیافراگم و \(\pi \) میزان انحراف در \(\pi \) می‌باشد [4]. سه مرحله منفکش شده یکی از انتهای فیبری یعنی سطح \(E_1 \) و دو دیگر از سطح داخلی ویور پنل ویل کلاهک بر پنل PVC و سطح \(E_2 \) به‌ترتیب قرار می‌گیرند. طول کاواک نیز به‌عنوان یک پارامتر مؤثر در حساسیت حسگرهای می‌باشد که با رابطه (2) مشخص می‌شود و در آن \(\lambda_1 \) و \(\lambda_2 \) طول موج‌های دو درجه متوالی در نور تداخلی و \(n \) ضریب پارتیب‌ات مورد است. \[L = \frac{\lambda_1\lambda_2}{2n(\lambda_1-\lambda_2)} \]

3- ساخت حسگر و آماده‌سازی ابتکار جهت تست حسگر گازی

ابزارها و وسایل مکانیکی جهت ساخت پروب حسگر فابری-پرو و همچنین تجهیزات ابتکاری جهت طیف‌سنجی و تست مورد نیاز است. طول‌های مختلف کاواک هر دو گام‌ها اندازه‌گیری شده و راه‌پیمایی با ضخامت‌های مختلف روي تار لایه‌شناسی سه‌بعدی است. پس از

این مقاله در صورتی دارای اعتبار است که در سایت http://opsi.ir قابل دسترسی باشد.
این مقاله در سال ۱۴۰۰ تألیف دانشگاه شهید بهشتی بوده و با موضوع ارزیابی تغییرات طول موج بررسی شده است. بیشترین حساسیت سیستم به استفاده از ماده PVC برای کاهش ضخامت دیافراگم و افزایش طول موج بررسی شده است.

شهید بهشتی اولین کنفرانس ملی حسگر‌های فیبرنوری - ۶ آبان ۱۳۸۹ - پژوهشکده لیزر و پلاسماس یک میلی‌متر ضخامت و دو میلی‌متر خط انتقال‌ها استفاده کرده است.

شکل ۲، (الف) نمودار تغییرات طول موج بررسی ضخامت دیافراگم برای گازهای آکسیژن و نیترژن. (ب) نمودار تغییرات طول موج بررسی طول موج بررسی کاواک برای گازهای آکسیژن و نیترژن.

تغییرات طول موج بررسی ضخامت دیافراگم برای گازهای آکسیژن و نیترژن می‌باشد. در این مقاله طراحی و ساخت یک حسگر فابری-پو تار نوری برای انتقال گری فنر مورد بررسی قرار گرفته است. جهت بررسی تأثیر ضخامت لایه‌نشانی PVC بر ضخامت‌های ۰.۲۸، ۰.۴۲، ۰.۵۶، ۰.۷۰ و ۰.۸۴ میکرومتر لایه‌نشانی و سپس تست حسگری با گازهای مختلف انجام شده است. در مراحل بعد طول کاواک را به ۰.۳۲۱، ۰.۵۰، ۰.۸۵، ۱.۰ و ۱.۲ میلی‌متر تغییر داده و تست‌هایی انجام شده است. نتایج نشان داد که با کاهش ضخامت دیافراگم و همچنین کاهش طول کاواک، حساسیت حسگر بیشتر می‌شود.

مراجع