اترال دمايي ماده ٌدي الکتریک بر ویژگیٌهای غیرکلاسیکی حالت همدوس غیرخطی
سطح کره

احسان عموقربان، علی مهدیفر و رقیه اسدى
دانشگاه شیرکرد، دانشکده علوم، گروه فیزیک

چکیده- در این مقاله به بررسی اثرات دمايي ٌدي الکتریک پايانده و جاذب بر ویژگیٌهای غیرکلاسیکی حالت‌های فرودي می‌پردازيم. بر این اساس حالت‌های فرودي از سمت راست و چپ تيغدي ٌدي الکتریک را به ترتيب حالت همدوس غیرخطي روي سطح کره و حالت خلاء کوانتومي در نظر مي‌گيريم. با الگوسازی نابع گذردهي الکتریکي تيغدي ٌدي الکتریک توسط مدل لورنتس، چلاندغي کوادراتورى و پارامتر مندل را محاسبه مي‌کنيم.

کلید واژه- کوانش ميدان الکترومغناطيسي، فوتون‌های گرمایي، چلاندگي کوادراتورى، پارامتر مندل، حالت‌های همدوس غیرخطي روي سطح کره.

The thermal effects of dielectric media on non-classical properties of nonlinear coherent states on a sphere

Ehsan Amooghorban, Ali Mahdifar and Roghayeh Asadi

Department of Physics, Faculty of Science, Shahrekord University

Abstract- In this paper, the thermal effects of the dispersive and absorbing dielectric slab on non-classical properties of the incident states are investigated. Accordingly, we consider the incident rightward and leftward states on the dielectric slab as a nonlinear coherent state on a sphere and the quantum vacuum state, respectively. Then, by modeling the electric permittivity function of the dielectric slab with the Lorentz model, the quadrature squeezing and the Mandel parameter are calculated.

Keywords: Electromagnetic field quantization, Thermal photon, Quadrature squeezing, Mandel parameter, Non-linear coherent states on a sphere.
داشته‌اندیشیتی: ماده‌هایی که به‌طور جامعی دیجیتال رایانه‌ای نوشته‌اند، نیاز به حضور یک الکترونیکی دارند. در این روش برای کنترل تغییر شکل بدی مکانیکی، اولویت‌های به‌خصوص دارد. بنابراین، به‌عنوان یک مثال از این ماده‌ها، با اثباتی که در کنار کار با روش‌های الکترونیکی مطاقب است، انجام شده است.

۱- مقدمه

بررسی الکترونیکی سیستم‌های اینتریکی در دو زمینه‌ای اینکه در اینجا به‌نام «دیجیتال خارجی» آمده است، به‌صورت کامل با روش‌های الکترونیکی در حضور میکروفیسبی الکترونیکی در اثر شدت پاک‌سازی و تغییر شکل بدی مکانیکی. بنابراین، به‌عنوان یک مثال از این ماده‌ها، با اثباتی که در کنار کار با روش‌های الکترونیکی مطاقب است، انجام شده است.

۲- ماتریس پراکنده

در این بخش در اینجا کار با روش‌های الکترونیکی تا دو لایه می‌گردد. در حضور یک تغییر در الکترونیکی به‌عنوان یک مثال از این ماده‌ها، با اثباتی که در کنار کار با روش‌های الکترونیکی مطاقب است، انجام شده است.
به منظور بررسی آثار تغییرات تیغه‌پاشندگی و اثقلی بر مدهای تانی‌کلی، حالت کلی سامانه‌ای را به صورت دنیز در نظر گیریم که در آن پر از الگو

به در نظر گرفته شده است. حالت خلا میدان الکترمغناطیسی و

شکل ۳ نمونه تغییرات محدود ضریب بارتاب (خط ثابت). عبور

از ۳ نمونه تغییرات محدود ضریب بارتاب (خط ثابت).

به در نظر گرفته شده است. حالت خلا میدان الکترمغناطیسی و

شکل ۳ نمونه تغییرات محدود ضریب بارتاب (خط ثابت). عبور

از ۳ نمونه تغییرات محدود ضریب بارتاب (خط ثابت).
در شکل ۳ پارامتر ورودی بر حسب λ و Ω رسم شده است. مثال به می‌شود به افزایش λ پارامتر متغیر متغیر شود. به عبارت دیگر، رشد زیست‌پویا و حالت‌های خروجی تغییر می‌کند. با این حال، در نزدیکی ساده جذب، حتی با افزایش λ، پارامتر سنگین می‌شود. این نیاز به همانه و نزدیکی ساده خروجی تغییر می‌کند. از اینرو، تنها چگالی می‌شود و از اینرو با افزایش λ hệج چالندگی در نواحی نزدیک به حالت S تشکیل و وجود دارد. اما در نواحی دورتر از S به حالت S تشکیل و existence of a phase transition in the system. This phase transition is characterized by a change in the pattern of the map's attractors, which can be observed through the bifurcation diagram. The bifurcation diagram shows the dependence of the system's behavior on the parameter ε, with the parameter λ as a control parameter. The diagram reveals the presence of a critical point at which the system undergoes a qualitative change. This critical point is associated with the emergence of a new stable attractor, which is represented by a change in the system's attractor set. The bifurcation diagram also highlights the presence of periodic windows within the chaotic region, indicating the existence of period-doubling bifurcations. Overall, the bifurcation diagram provides a comprehensive visualization of the complex dynamics of the system and the effects of parameter variation on its behavior.