Study of the gas solution’s effect on the moving single bubble sonoluminescence radiation

Maryam Gheshlaghi¹, Homa Ebrahimi², Morteza Pishbini¹, Rasoul Sadighi-Bonabi²

¹Department of physics, Payame Noor University Tehran, Tehran
²Department of physics, Sharif University of Technology, Tehran

Abstract- Temperature and Internal pressure were measured and compared for moving single bubble sonoluminescence in water with presence of noble gases He, Ne, Ar, Kr and Xe. Also temperature-dependent emission intensity of a bubble is based on Bremsstrahlung model for noble gas bubbles were measured and compared. It was found that with increasing the molecular weight of gas, the bubble temperature increases and hence the emission intensity enhances.

Keywords: Bremsstrahlung radiation, sonoluminescence, noble gases
1- مقدمه
حباب کوچک سونولومنیسیس، یک دستگاه مکرو موشی برای ازآمایش و بررسی ویژگی‌های گازهای مختلف در دماهای خیال با کمک درست‌سازی آن دماها با هیبرد و اجاقه‌های عمومی امکان‌پذیر نیست، می‌باشد[۱۲].

\[\gamma(\text{Pe}) = 1 + \left(\Gamma - 1\right) \exp\left(-\frac{A}{\text{Pe}^{N}}\right)\]  

(6)

در مقدمه ۲ به ترتیب فشار غاز در دیورز، حباب، کش و سطحی و بی‌پروازی شیمیایی می‌باشد. در معادله ۸ سیستم حبابی و \(P_0\) باعث یک فشار محتوی است و یک فشار کلمی شده به صورت زیر است:

\[P_0 = P_g - \frac{2\sigma}{R} - 4\frac{R}{R} \sin(\theta)\]  

(2)

در این معادله \(P_g\) سطح و فرانکاس است. \(R = 3cm\) فضای داخلی حباب از مرکز کوکو و \(\theta\) یک فشار داخلی حباب به صورت زیر نمودار می‌باشد:

\[P_0 = P_g - \frac{2\sigma}{R} - 4\frac{R}{R} \sin(\theta)\]  

(5)

در این معادله ۲ به ترتیب فشار غاز در دیورز، حباب، کش و سطحی و بی‌پروازی شیمیایی می‌باشد. در معادله ۸ سیستم حبابی و \(P_0\) باعث یک فشار محتوی است و یک فشار کلمی شده به صورت زیر است:

\[P_0 = P_g - \frac{2\sigma}{R} - 4\frac{R}{R} \sin(\theta)\]  

(2)

در این معادله ۲ به ترتیب فشار غاز در دیورز، حباب، کش و سطحی و بی‌پروازی شیمیایی می‌باشد. در معادله ۸ سیستم حبابی و \(P_0\) باعث یک فشار محتوی است و یک فشار کلمی شده به صورت زیر است:

\[P_0 = P_g - \frac{2\sigma}{R} - 4\frac{R}{R} \sin(\theta)\]  

(2)

در این معادله ۲ به ترتیب فشار غاز در دیورز، حباب، کش و سطحی و بی‌پروازی شیمیایی می‌باشد. در معادله ۸ سیستم حبابی و \(P_0\) باعث یک فشار محتوی است و یک فشار کلمی شده به صورت زیر است:

\[P_0 = P_g - \frac{2\sigma}{R} - 4\frac{R}{R} \sin(\theta)\]  

(2)
پیشینه کنفرانس اینترنتی و فوتونیک ایران به همراه ششمین کنفرانس مهندسی و فناوری فوتونیک ایران

\[
P_{\text{Br,ion}} = 1.57 \times 10^{-49} q^2 N^2 \gamma a \frac{4}{3} \pi r^3 \quad (12)
\]
\[
P_{\text{Br,atom}} = 4.6 \times 10^{-44} q^2 N^2 \gamma a \frac{4}{3} \pi r^3 \quad (13)
\]
که در ان \( T \) و \( q, N \) عددی تری درجه پنکس، عددی دانشجو اثربخش و عددی داخلی حیوان هستند. درجه پنکس به راحتی به صورت زیر است:

\[
\frac{q^2}{1-q} = 2.4 \times 10^{22} \gamma^{3/2} e^{-e_{\text{gas}}/kT} \frac{1}{N}
\]  
(14)

\[
\gamma = \frac{\gamma_{\text{gas}}(R,T)}{2} \quad \text{G}(g)
\]  
(8)

\[
G(g) = \frac{1}{g} \left[ \left( c_1 g + c_3 g^2 + c_5 g^3 + 1.2g \right) + 0.755 g^2 (1 + c_1 g + c_2 g^2 + c_4 g^3) \right]
\]  
(9)

\[
\rho = 2\pi N_a \frac{a_{\text{gas}} R_0^3}{3kT_m R^3}
\]  
(10)

\[
\rho = \frac{1}{1 - \rho_{\text{gas}}(R,T)} - 1
\]  
(11)

\[
\hat{T} = -[\rho(Pe) - 1] \frac{3R^2 \hat{R}}{R^3 - h^3} T - \frac{T - T_{\infty}}{R^2}
\]  
(12)

\[
\text{است.}
\]

\[
\text{مدل برماشلراننگانه}
\]

\[
\text{در این مقاله فرض است که فاز تبدیل ای از قرارندهٔ مختلف برماشلراننگانه‌ی.}
\]
بعضی مدل‌های تابشی دیگر برای یافتن یک مکانیزم تابش محیطی برای هر سیستم ایده آل‌هایی می‌شود.

مراجع


جدول 1: پارامترهای مختلف گازهای نجیب

<table>
<thead>
<tr>
<th>گاز نجیب</th>
<th>شعاع مولکول (A)</th>
<th>وزن مولکولی (kg/mole)</th>
<th>حجم ویژه مولی (mol/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe</td>
<td>2.16</td>
<td>0.1312</td>
<td>0.0223</td>
</tr>
<tr>
<td>Kr</td>
<td>2.20</td>
<td>0.0837</td>
<td>0.0223</td>
</tr>
<tr>
<td>Ar</td>
<td>1.88</td>
<td>0.0399</td>
<td>0.0223</td>
</tr>
<tr>
<td>Ne</td>
<td>1.54</td>
<td>0.02017</td>
<td>0.0224</td>
</tr>
<tr>
<td>He</td>
<td>1.4</td>
<td>0.00400</td>
<td>0.0224</td>
</tr>
</tbody>
</table>

جدول 2: خواص فیزیکی آب در °C

| C = 1485m.s⁻¹ | سرعت صوت در آب |
| v = 10⁻⁶m².s⁻¹ | ویسکوزیته جنثطی |
| σ = 0.072 N.m⁻¹ | کشش سطحی |
| ρ = 998 K.g.m⁻³ | چگالی |

نتیجه گیری

اثر محول گاز روی خواص SBSL در آب بررسی شد. نشان داده شد که با افزایش وزن مولکولی گاز، دمای داخلی حباب و شدت گسیل افزایش می‌یابد. گرچه فشار داخلی حباب کاهش می‌یابد، هر چند افزایش وزن مولکولی گاز کوچک است اما می‌توان اخلاق برگی در پروفايل تابش ملاحظه کرد. با وجود اینکه اندامه های بدن امدد در توافق با نتایج محاسبه شده تجربی بیشتر است. اخلاق SBSL برای به کار بردن گازهای نجیب بزرگ در اندازه‌های مدل بررسی شد. اکثر برای اندازه‌های بزرگ و تعداد زیاد می‌کند. بنابراین لزوم بررسی