Relativistic Cerenkov Radiation in a Magneto-Dielectric media

Maryam Mohammadi K.

Zanjan University

Abstract- In this paper relativistic Cerenkov radiation was studied in a 3-D magneto-dielectric medium. The dielectric function permeability of the medium are assumed to satisfy Kramers-Kronig equations. It is introduced the new intraction Hamiltonian which is different from Hamiltonian term in non-relativistic state based on quantized electromagnetic field and second quantization method. It is calculated the losing energy longitudinal with using the transition probability term in the Fermi”s golden rule.

Keywords: Cerenkov radiation, Fermie’s golden rule.
1- مقدمه

برای اولین بار تاشی چرگوف در تحقیقات مواد رادیوکتیویتی مشاهده شده بود. چرگوف نشان داد مشاهده این تابش، الکترون پرانژی است که در محفظ مادی با سرعتی بین سرعت نور در این محیط حرکت و طی این فرآیند گسیل می‌کند. برای بررسی تاشی چرگوف سیستم را منشکه از یک الکترون در حال حرکت به جرم و بار الکتریکی در حال به هم کشیدن با میانکه الکترون‌مغناطیسی در محیط از الکتریکی مغناطیسی در نظر گرفته می‌شود. این فرضی می‌شود که الکترون قبل از گسیل یک خط به اندازه حرکت باشد. آن‌طور که در این مقاله به نظر می‌رسد که بنکنش میزان در محیط مادی برهم خواهد گرفت. از محیط مادی توسط $k(r, \omega)$ و ناحیه مغناطیسی $e(r, \omega)$ توصیف می‌شود. اصل علت ایجاد می‌کند که هر دو به‌طور متفاوت بر اساس $A(r, \omega)$ قسمت حقيقی آن خاصیت باشد و قسمت معادله آن خاصیت افتراقی محیط را موجب می‌شود. این دو قسمت با روابط کاملاً- گرگینگ به هم وابسته اند. ضریب شکست مخلوط در محیط صورت جبری تعریف می‌شود:

$$n(r, \omega) = e(r, \omega) \mu(r, \omega)$$ (1)

که در آن $e(r, \omega)$ به ترتیب پذیرفتاری محیطی و گرگینگ الکتریکی محیط اتمی می‌شود.

در این مقاله با استفاده از میزان الکترون‌مغناطیسی کوانتنیه شده و کوانتنیه می‌شود(کوانتنی محیط میان با هنگ افتراقی محیط را ثابت کرد و در واحد طول که در الکترون با سرعت نسبی حرکت می‌کند محاسبه می‌شود.

2- کوانتنی میانکه الکترون‌مغناطیسی

در گزار از الکترون‌مغناطیسی کلاسیک به الکترون‌میاک کوانتنیه اولین گام کوانتنیه کردن میزان است. روش‌های مختلفی برای کوانتنی میزان‌های الکترون‌مغناطیسی وجود دارد. از این جمله می‌توان کوانتنیه کردن میزان بر حسب توابع، مفاهیم استفاده از معادلات اولیر- لاکرانژ و تابع گرین را نام برد.
5- احتمال گسیل فوتون

در بررسی تابش چرخک فرض می‌شود که تعداد فوتون‌ها در حالی سیستم مختل نشده صفر باشد و پس از یک گسیل تاکنون یک فوتون تولید شود. با داشتن اطلاعات فوق می‌توان احتمال گسیل فوتون در واحد زمان توسط الکترونی که با سرعت \(v \) در محیط حرکت می‌کند را به دست آورد. بین منظور داشتن محاسبه فرمی استفاده می‌شود. اگر سیستم ابدا در حالت اولیه (\(|i \rangle \) باند، احتمال توان گسیل فوتون در واحد زمان برای آنکه سیستم در حالت نهایی \(|f \rangle \) با انرژی \(E_f \) بازیابی شود، طبق قاعده فرمی به صورت زیر محاسبه می‌شود:

\[
\left(\frac{\text{trans.prob}}{\text{time}} \right)_{\lambda} = \frac{\pi \hbar}{\lambda} \left| V^\lambda \right| |E_f - E_i|
\]

در رابطه بالا، \(V^\lambda \) عنصر ماتریسی اختلال است که به صورت زیر تعیین می‌شود:

\[
V^\lambda_i = \langle f | V | i \rangle
\]

که پس از جایگذاری رابطه زیر به دست می‌آید:

\[
\left(\frac{\text{trans.prob}}{\text{time}} \right)_{\lambda} = \frac{\pi \hbar}{\lambda} \left| V^\lambda \right| |E_f - E_i|
\]

روابط پایداری جایی آنها نیز به صورت زیر است:

\[
\left[\hat{b}(p,t), \hat{b}(p',t) \right] = 0
\]

6- هاملتونی برهم کنش

همامولوی نسبتی برهم کنش الکترون با میدان الکترومغناطیسی در تابش مورد نظر ما به شکل زیر است:

\[
\hat{H}_i = -\frac{e}{c} \int d^3 r \psi^+ \cdot \mathbf{A} \psi
\]

که در آن \(\psi \) عملگر میدان فرضی می‌باشد. با جایگذاری به شکل زیر در می‌آید:

\[
\hat{H}_i = -\frac{e}{c} \int d^3 r \psi^+ \cdot \mathbf{A} \psi
\]
در واقع عبارت (۱۹) نشان دهنده تصحیح نسبیتی برای محیط دیالکتریک غیرخطی است. این نسبت برای سرعتهای پایین در اثر ناقل برای یک است که با انتظار ما تاکنون خوبی دارد. هرچه سرعت الکترون به سمت سرعتهای بالا می‌رود، نسبت به یک فاصله می‌گردد.

۷- نتیجه گیری

انرژی انتقالی پیمودن در واقع طرح برای نابش جردناف و نسبیت به دست آورده می‌باشد. اما ایجاد محاسبات می‌تواند نسبیت به دست آورد. با انتخاب و تعمیم روابط خودش (۱۹) انتقال انرژی در محیط دیالکتریک که در آن سرعت الکترون با سرعت غیر نسبیتی خروجی (کند) است. در واقع هدف از ایجاد این محاسبات بهبود بخشیدن به روابط غذه است.

سیاست‌گزاري

از جنبه آقای دکتر محمودضا مطلوب که اینجلب را در تهیه این مقاله یاری دادند تشکر می‌نمایم.

مراجع