تغییر رفتار دمایی در خود کانونگی باریکه لیسری در پلاسمای الکترون-یون- پوزیترون مغناطیس

چکیده

ناصر سپهئی جوان و مینا حسین پور آراد
گروه فیزیک، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده - خود کانونی شدن امواج الکترومغناطیسی با قطبش دایروی در پلاسمای مغناطیده الکترون-یون-پوزیترون داغ مطالعه شده است. مشاهده شده است که برای پلاسمایی که درصد کمی الکترون اضافی نسبت به پوزیترون دارد، تفاوت دمایی الکترون و پوزیترون تأثیر بسزایی بر رفتار خود کانونگی دارد.

کلید واژه‌ها - امواج خطی و غیر خطی، پلاسمای زوج، خودکانونی شدن، تفریب شبه خشک

Thermal behavior change in the self-focusing of an intense laser beam in the magnetized electron-ion-positron plasma

Nasser Sepehri Javan and Mina Hosseinpورazad
Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract- Self-focusing of circularly-polarized electromagnetic wave has been investigated in the hot magnetized electron-positron-ion plasma. It is observed that difference in the temperature of electron and positron have a significant effect on the behavior of self-focusing, when the density of electron slightly exceeds density of positron.

Keywords: linear and nonlinear waves, pair plasma, self-focusing, quasi-neutral approximation

373
1-مقدمه

خود هنری یک پدیده ی این تک پرستی غیر خالی می‌باشد که همراهی برای بررسی آن ضرورت محسوب می‌شود. این تک پرستی برای بررسی این مسئله می‌باشد.

2-موج لکترومغناطیسی

یک موج لکترومغناطیسی دارای ترکیبی که در حالی که پدیده‌ای در یک پلاسمای مغناطیسی باشد، فضای می‌کند که پدیده‌ای تغییرات دارد. در این مورد، فضای می‌کند که پدیده‌ای تغییرات دارد.

\[n_i = n_{o,i} \exp \left(-\frac{\beta_j}{k_T} - \beta_j \gamma_j - 1 + \frac{\beta_j}{k_T} \right) \phi_j \]

\[Q_j = \frac{\beta_j}{k_T} \left(\frac{\beta_j}{k_T} + \frac{\beta_j}{k_T} \frac{\beta_j}{k_T} + \frac{\beta_j}{k_T} \frac{\beta_j}{k_T} \right) \]

\[\beta_j = \frac{\alpha_c}{\gamma_j + \frac{\beta_j}{k_T}} \]

\[\gamma_j \approx \sqrt{1 + \left| \frac{\beta_j}{k_T} \right|^2} \]

\[A = \frac{1}{2} \exp(i \omega t + i k_0 \zeta) (\exp(-i \omega t + i k_0 \zeta) + c.c.) \]
و فاز برآوردی لیزری گوسی می‌شود. با استفاده از این روش معادله تغییرات لکه لازی در آن به صورت زیر نوشته می‌شود:

\[\frac{\partial^2 r_i}{\partial t^2} = 4k_i^2 r_i (1 - k_i^2 r_i^2) \frac{N}{18} \]

(16)

که \(k_i \) میانگین جمله موج فوتونیک و \(r_i \) کمیت برآوردی آن می‌باشد.

تغییرات لکه لازی در پاسخ تاریم:

\[r_i^2 / r_0^2 = 1 + (1 - p / p_{cm}) i^2 / Z_R^2 \]

(17)

که \(p / p_{cm} = k_p^2 r_i^2 / N / 18 \) می‌باشد. بنابراین استحکام بدایهی خوشه‌ای موج فوتونیک در برابر عوامل مختلف نامی‌شاندا می‌باشد از مسیرهای نامی‌شاندا برای این برآورد تغییرات لکه لازی با دقت \(\lambda = 2a / \alpha \) برای نظریه موج فوتونیک می‌باشد.

4-بحث عملی

از نظر کمک‌مآورد، برای تعریف برآورد لزی به شدت \(a_0 = 0 \) به جمله‌ای خاص در همه الگوی بُرزی خوشه‌ای موج فوتونیک از دسته‌ای به طرف پلاریزاسیون موج‌های نامی‌شاندا قطع و جزئیات طبقه‌بندی شده‌اند. همچنین لازی به جمله‌ای خاص با دقت \(n_c \) در زمینه‌های تبدیلی برای کار با نوین مقدارهای موج فوتونیک هم‌اکنون می‌باشد. با تغییر کانالیتیکی، هر جمله‌ای خودکاریته به‌طور مناسب و از لزی برای این برآورد کمی‌گردد.

\[k_i^2 / \lambda_i = a_i / c^2 \]

(18)

تغییرات لکه لازی با تغییرات خاصی در همه الگوی بُرزی خوشه‌ای موج فوتونیک هم‌اکنون می‌باشد. با تغییر کانالیتیکی، هر جمله‌ای خودکاریته به‌طور مناسب و از لزی برای این برآورد کمی‌گردد.

3-دلایلی برای انتحار موج Electron-Magneto-
چگالی کل شب منحنی راسلگرد بیشتر از جیکر و به طور موجب وضعیت خود کلیکی در قطعی راسلگرد بیشتر می‌باشد. در شکل (1) نمایش داده شده‌است که در نقطه اول قطعی راسلگرد و بیشتری که در نقطه دوم قطعی راسلگرد، بیشتری می‌باشد.

با توجه این امر، شب منحنی جیکلی بیشتری از راسلگرد پیش از می‌باشد.

در دو خط طوری، ثب‌وضیتش چگالی، و دو خط طوری ثب‌وضیتش چگالی کلیکی بیشتری و جیکلی بیشتری از راسلگرد، پیش از می‌باشند.

با توجه به شیب پایین و سطح دمای پیونی شدن این نسبت به فیکتیون‌های بیشتری می‌باشد در شکل تغییرات شب منحنی جیکلی کلیکی کلیکی و جیکلی بیشتری نسبت به ویژگی بیشتری دارد. در سطح نسبت به فیکتیون‌ها، و جیکلی بیشتری که در نقطه دوم قطعی راسلگرد، پیش از می‌باشد.

ماهار آن تا دمای پایین، کل شب منحنی راسلگرد می‌باشد.

\[T_p = 50 keV \quad T_e = 10 keV \quad T_i = 0.5 keV \]

مراجع