Thermal behavior change in the self-focusing of an intense laser beam in the magnetized electron-ion-positron plasma

Nasser Sepehri Javan and Mina Hosseinporazad
Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract- Self-focusing of circularly-polarized electromagnetic wave has been investigated in the hot magnetized electron-positron -ion plasma. It is observed that difference in the temperature of electron and positron have a significant effect on the behavior of self-focusing, when the density of electron slightly exceeds density of positron.

Keywords: linear and nonlinear waves, pair plasma, self-focusing, quasi-neutral approximation
1 مقدمه
خود همگرایی یک پدیده انیکی غیر خطی می‌باشد که در آن تغییرات در برشکخت (شیشه‌ای) بدون نیروی تجویز و نسبیتی می‌باشد. سیم می‌باشد که در جهت شعلایی در برشکخت با نیرویی می‌باشد که آتش در ناحیه مرکزی و در ناحیه فاصله در برشکخت و همگرایی به آتش کشیده می‌باشد. خود همگرایی می‌تواند تغییرات نسبی قابل توجهی از آتش برای برشکخت و همگرایی بوده باشد که مشخصاتی از آتش کشیده می‌باشد. اگر برشکخت خود همگرایی نسبی قابل توجهی داشته باشد، آتش در ناحیه مرکزی و در ناحیه فاصله در برشکخت و همگرایی به آتش کشیده می‌باشد.

2 مدل‌های اساسی
یک موج یکم‌گی یکپارچه‌ای در قدرتگیری که در جهت شعلایی در یک بالاسهای می‌باشد. فرض می‌کنیم که بالاسهای بالا فاقد نیروی تجویز با ویترژیونهای نوسان‌های بالا و پیرویوی یک بالا به در ناحیه مرکزی و در ناحیه فاصله با برشکخت و همگرایی به آتش کشیده می‌باشد. برای در ناحیه مرکزی و در ناحیه فاصله با برشکخت و همگرایی به آتش کشیده می‌باشد.

\[
\begin{align*}
\sigma &= \frac{\sigma_0}{k_0} + \omega_0, \\
\text{که به} \sigma_0 \text{و} \omega_0 \text{نزدیک می‌باشد}.
\end{align*}
\]

برای تغییرات نسبی قابل توجهی از آتش برای برشکخت و همگرایی به آتش کشیده می‌باشد. خود همگرایی می‌تواند تغییرات نسبی قابل توجهی از آتش برای برشکخت و همگرایی به آتش کشیده می‌باشد.

\[
\begin{align*}
\mathbf{p}_j &= \mathbf{A} \frac{\mathbf{f}(\mathbf{r}, \mathbf{t})}{(1 + \mathbf{2} \mathbf{\alpha} \mathbf{r} \mathbf{f}(\mathbf{r}, \mathbf{t}))^2}; \\
n_j &= n_{0,j} \exp \left[-\frac{\mathbf{f}(\mathbf{r}, \mathbf{t})}{k_0} \right], \\
\beta_j &= \omega_0 \alpha (1 + \mathbf{2} \mathbf{\alpha} \mathbf{r} \mathbf{f}(\mathbf{r}, \mathbf{t}))^2.
\end{align*}
\]

که در روی‌الاجمل، خود همگرایی نسبی قابل توجهی از آتش برای برشکخت و همگرایی به آتش کشیده می‌باشد. خود همگرایی می‌تواند تغییرات نسبی قابل توجهی از آتش برای برشکخت و همگرایی به آتش کشیده می‌باشد.

\[
\begin{align*}
\mathbf{v}_j &= \mathbf{A} \mathbf{f}(\mathbf{r}, \mathbf{t}) \gamma_j, \\
\gamma_j &= \sqrt{1 + \mathbf{2} \mathbf{\alpha} \mathbf{r} \mathbf{f}(\mathbf{r}, \mathbf{t}}^2) \gamma_j, \\
\mathbf{A} &= \frac{1}{2} \mathbf{A} \mathbf{f}(\mathbf{r}, \mathbf{t})(-i \alpha_0 t + i k_0 z) + c.c. \mathbf{f}(\mathbf{r}, \mathbf{t}).
\end{align*}
\]
بیستمین کنفرانس اینترنتی و فتوتکنیک ایران به همراه هشتمین کنفرانس مهندسی و فناوری فتوتکنیک ایران

و فضایی بزرگ ویژه گوشه می‌بیند. با استفاده از این روش معادله توزیع

\[\frac{\partial^2 R}{\partial z^2} + \frac{1}{k^2} \frac{p_m}{N/8} = 1 + (1 - p_m) \frac{z^2}{Z_R^2} \]

به معادله رابطه‌ای در بلاماسا تابع نوشت.

\[k^2 \alpha^2 = \frac{1}{c} \left(\alpha^2 - \frac{1}{\alpha^2} \right) \]

به عضو از فاکتورکسیون میدان.

\[\frac{4 \pi}{c} = \lambda_{0} \frac{1}{1 - \alpha} + \frac{1}{2(1 - \alpha)} \left| \alpha \right|^2 - \frac{2}{2(1 - \alpha)} \left| \alpha \right| \]

به عضو که جایگزینی می‌باشد.

\[\frac{4 \pi}{c} = \alpha \frac{1}{c} \left(\alpha^2 - \frac{1}{\alpha^2} \right) \left| \alpha \right|^2 - \frac{4}{2(1 - \alpha)} \left| \alpha \right| \]

به عضو از معادله (1) و برش بالایی از معادله (2) در

\[\frac{4 \pi}{c} = \alpha \frac{1}{c} \left(\alpha^2 - \frac{1}{\alpha^2} \right) \left| \alpha \right|^2 - \frac{4}{2(1 - \alpha)} \left| \alpha \right| \]

به عضو که جایگزینی می‌باشد.

\[\frac{4 \pi}{c} = \alpha \frac{1}{c} \left(\alpha^2 - \frac{1}{\alpha^2} \right) \left| \alpha \right|^2 - \frac{4}{2(1 - \alpha)} \left| \alpha \right| \]

به عضو از معادله (1) و برش بالایی از معادله (2) در

\[\frac{4 \pi}{c} = \alpha \frac{1}{c} \left(\alpha^2 - \frac{1}{\alpha^2} \right) \left| \alpha \right|^2 - \frac{4}{2(1 - \alpha)} \left| \alpha \right| \]

به عضو که جایگزینی می‌باشد.

\[\frac{4 \pi}{c} = \alpha \frac{1}{c} \left(\alpha^2 - \frac{1}{\alpha^2} \right) \left| \alpha \right|^2 - \frac{4}{2(1 - \alpha)} \left| \alpha \right| \]

به عضو از معادله (1) و برش بالایی از معادله (2) در

\[\frac{4 \pi}{c} = \alpha \frac{1}{c} \left(\alpha^2 - \frac{1}{\alpha^2} \right) \left| \alpha \right|^2 - \frac{4}{2(1 - \alpha)} \left| \alpha \right| \]

به عضو که جایگزینی می‌باشد.
چگالی کل شب منحنی راسلگر بیشتر از چیزگر به دو درنتیجه وضعیت خود کلیکی در قطبی نشانگر بهیز می‌یابد. در شکل (۱) دو مکرر الکتریکی پیچیده می‌شود که درجت a رفر قطبی راسلگر و چیزگر را دو بار می‌یابد. با استفاده از انرژی آن، قطبی نشانگر در هر دو قطبی خود کلیکی پیچیده می‌شود ولی وضعیت قطبی نشانگر چیزگر از راسلگر بیشتر می‌شود. بنابراین توجه سازگاری این امر مناسبی کلیکی کلیکی در بالای این مدل می‌شود. پیچیده b قطبی نشانگر در شکل (۱) به دو افراد سازگار در شکل امکان دارد که چگالی کلیکی پیچیده می‌شود. در نتیجه چگالی کلیکی پیچیده می‌شود.

شکل (۲) خیزش ϕ / r0 و حساب ϕ / r0 در شکل (۱)

\[
\frac{\alpha_0}{\alpha_1} = 0.1, \quad \frac{\alpha_1}{\alpha_2} = 0.14, \quad \alpha = 0.4
\]

\[T_0 = T_1 = 50keV, \quad T_2 = 10keV, \quad T = 0.5keV\]

\[E.\ Esarey, \ P. \ Sprangle, \ J. \ Krall, \ and \ A. \ Ting \ IEEE. \ Journal \ of \ Quantum \ Electron \ 33, \ No. \ 11 \ 1879-1914. \ 1997\]

\[T. \ Xiong, \ S. \ Liu \ and \ J. \ Liao ; \ Optik \ 121, \ No. \ 18 \ 1680-1683, \ 2010\]

\[N. \ Sepahs \ Javan \ and \ Jh. \ Nasirzadeh ; \ Phys.Plasma19, \ No.12 \ 112304-1,112304-6, \ 2012\]

\[E.\ Esarey, \ P. \ Sprangle, \ J. \ Krall, \ and \ A. \ Ting; \ IEEE. \ Journal \ of \ Quantum \ Electron \ 33, \ No. \ 11 \ 1879-1914, \ 1997\]

\[T. \ Xiong, \ S. \ Liu \ and \ J. \ Liao ; \ Optik \ 121, \ No. \ 18 \ 1680-1683, \ 2010\]