Comparative study of perovskite solar cells with different Al_2O_3 thicknesses

A. Ghorbani Koltapeh, B. Abdollahi Nejand, M. K. Moravvej-Farshi

Faculty of Electrical and Computer Engineering, Nano Plasmo-Photonic Research Group, Tarbiat Modares University, Tehran, Iran

*moravvej@modares.ac.ir

Abstract- The effect of the Al_2O_3 thin film on photovoltaic characteristics of perovskite solar cells is studied. The thin film of the Al_2O_3 is deposited on mesoporous TiO_2 by a rotational angular reactive sputtering method. The considered perovskite solar cells have the normal architecture of FTO/c-TiO_2/mp-TiO_2/CH$_3$NH$_3$PbI$_3$/spiro-OMeTAD/Au. The increase of Al_2O_3 thickness leads to higher open circuit voltage. However, the current densities of the fabricated solar cells are reduced due to insulating characteristics of Al_2O_3. Here, solar cells with 15 nm thickness of Al_2O_3 present the best performance among the three different thicknesses studied.

Keywords: perovskite solar cells, reactive magnetron sputtering, photovoltaic characteristics
1. Introduction

Perovskite solar cells (PSCs) composed of organic-metal-halide structures have achieved an undeniable breakthrough in photovoltaic development. The power conversion efficiency (PCE) of the perovskite solar cells has rapidly jumped from 3.8% [1] to certified 23.3% [2]. The general formula of the commonly used perovskite is ABX$_3$ containing an organic cation A, such as methylammonium (MA) or formamidinium (FA), a divalent metal B, such as Pb or Sn, and a halide X, such as bromine or iodine.

The impressive PCE increase can be attributed to their superior optoelectronic properties, including strong absorption coefficient (\sim105 cm$^{-1}$), low exciton binding energy (\sim20 meV), and relatively long carrier diffusion length (>1 μm). In addition, a wide range of solution processing techniques, including one-step deposition, two-steps sequential deposition, solvent-quenching, and other modified approaches based on these methods have been developed to fabricate uniform and high-crystalline perovskite films, resulting in the fast-rising in the device performance [3].

Although PSCs have made impressive progress in just a few years, there is still a long way to their commercialization. A key factor to further improve the device performance is to reduce nonradiative recombination processes. One of the commonly used structures for PSCs is FTO glass/ compact-TiO$_2$ (c-TiO$_2$)/ mesoporous-TiO$_2$ (mp-TiO$_2$)/Perovskite (MAPbI$_3$)/ hole transport material (HTM)/ Au. It is known that the surface passivation of potential recombination sites in mp-TiO$_2$ interface suppresses the interfacial recombination. Several metal oxides such as SiO$_2$, ZrO$_2$, MgO, Al$_2$O$_3$ are recognized as efficient capping materials in the solid-state dye-sensitized solar cells (DSCs) [4].

Here, we introduce a thin Al$_2$O$_3$ layer on mp-TiO$_2$ by the rotational angular reactive magnetron sputtering (RMS) deposition process in order to boost PSCs photovoltaic performance.

2. Experimental Section

FTO coated glass substrates are patterned by Zn powder and 2M HCl etching solution. The substrates are brushed vigorously without scratching FTO surface and they are cleaned ultrasonically for 10 minutes in detergent, deionized water, and isopropanol. After cleaning, UV ozone or plasma cleaning is used for 15 min right before depositing the TiO$_2$. The hole blocking compact and mesoporous TiO$_2$ layers are deposited by spin-coating respectively and then annealed at 500°C for 30 min [5]. Mesoporous thin film Al$_2$O$_3$ layer is deposited on mp-TiO$_2$ using rotational angular reactive DC magnetron sputtering. The chamber is evacuated to $\sim 4 \times 10^{-4}$ Torr. Prior to sputter deposition, Ar and O$_2$ gas are introduced via separate mass-flow-controlled inlets. The perovskite layer is prepared by a two-step spin-coating method. A 1 M PbI$_2$ solution is dropped wisely spin-coated. After drying on a hotplate, the solution of CH$_3$NH$_3$I in isopropanol was spin coated on PbI$_2$ coated substrate. Spiro-OMeTAD solution doped with tBP and LitFSI is spin-coated at 4000 rpm. The devices are left sealed overnight and then finished with 80nm thick gold contacts deposited on top via thermal evaporation.

![Fig. 1: Perovskite solar cells Schematic](image)

3. Results and Discussion

The FE-SEM image of thin Al$_2$O$_3$ layer sputtered on mp-TiO$_2$ is shown in Fig. 1. Comparing the two top layer images, it is possible to interpret that the porosity of the upper layer is conserved after the deposition of Al$_2$O$_3$ layer. Thus, the perovskite solution still can penetrate the mp-TiO$_2$ layer,
reserving high surface contact with mp-TiO$_2$ that facilitates the electron extraction in mesostructure perovskite solar cells.

![Fig. 1: FE-SEM image of a) mp-TiO$_2$ b) mp-TiO$_2$/Al$_2$O$_3$](image)

The sunlight illuminates the cell from the FTO side, through the wide bandgap Al$_2$O$_3$ layer. Hence, no optical absorption takes place by wide bandgap Al$_2$O$_3$. As a result, the aforementioned passivation layer causes no disturbance in the photogeneration of electron-hole pairs, while enhancing the photovoltaic characteristics of the cells.

Table 1 illustrates the photovoltaic properties of solar cells consisting of Al$_2$O$_3$ with different thicknesses of 5, 15, 25 nm. By increasing the thickness of insulating Al$_2$O$_3$ with the band gap of 6.6-8.8 (eV) (for bulk crystalline), the amount of open circuit voltages increases, on average. Al$_2$O$_3$ layer in the solar cell stack passivates possible recombination centers in the mp-TiO$_2$ interface.

<table>
<thead>
<tr>
<th>Al$_2$O$_3$ Thickness (nm)</th>
<th>V_{OC} (V)</th>
<th>J_{SC} (mA/cm2)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.91</td>
<td>17.0</td>
<td>8.5</td>
</tr>
<tr>
<td>5</td>
<td>0.92</td>
<td>13.8</td>
<td>7.0</td>
</tr>
<tr>
<td>15</td>
<td>0.94</td>
<td>13.7</td>
<td>8.9</td>
</tr>
<tr>
<td>25</td>
<td>0.95</td>
<td>10.6</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Although perovskite deposition methods have been modified to make a perfect pinhole free perovskite layer, they lead to layers with pinhole and roughness undeniably. Therefore, it is likely for HTM to be in direct contact with mp-TiO$_2$ through perovskite pinholes that cause non-radiative recombination sites. An optimum thickness of Al$_2$O$_3$ can block the intimate contact of charge transfer layers and enhances open circuit voltage of devices. In addition, with a constant photogeneration, the thermal recombination is decreased due to the passivation layer, leading to a reasonable optical efficiency for the optimum thickness.

Since the used metal oxide layer has insulating characteristics, current density decreases with the increase of the metal oxide thickness. A trade-off is made between open circuit voltage enhancement and Al$_2$O$_3$ thickness.

Figures 2-4 show the open circuit voltage, short circuit current density and the power conversion efficiency versus the Al$_2$O$_3$ thickness. One can see that as the Al$_2$O$_3$ thickness increases, the open circuit voltage increases while the current density decreases and PCE fluctuates. Nonetheless, these data show that the 15-nm Al$_2$O$_3$ thickness is the best choice for cells, benefiting from higher open circuit voltages, while not losing much of the current density and PCE.
Conclusion

We used the reactive magnetron dc sputtering method for deposition of Al$_2$O$_3$ layer in order to enhance V_{OC} in perovskite solar cells. The top layer FE-SEM of the layer is shown and the photovoltaic characteristics of the cells with different Al$_2$O$_3$ thicknesses were discussed.

Acknowledgment

The authors would like to acknowledge the financial support received from Tarbiat Modares University through grant #IG-39703.

References

