The effect of Cs cation on the performance of CH$_3$NH$_3$PbI$_3$ perovskite solar cell

Nasrin Solhtalab1, Vahid Ahmadi1, Farzaneh Arabpour Roghabadi1,2, Bahram Abdolahi Najand1

1 Optoelectronic and Nanophotonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran-Iran.

2 Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

*Corresponding author: v_ahmadi@modares.ac.ir

Abstract- In this work, methylammonium lead iodide (CH$_3$NH$_3$PbI$_3$) perovskite light absorbers are doped by cesium to improve the performance of perovskite solar cell. The optical, morphological, and crystalline properties of the pure and mixed perovskite films are investigated. The most uniform perovskite layer is obtained for the film containing 0.05M of CsCl that yields the device with higher power conversion efficiency (4.64%) than the other concentrations.

Keywords: Perovskite solar cell; Cesium, Perovskite absorber

This paper is authentic if it can be found in www.opsi.ir.
1. Introduction

Perovskite solar cells have attracted enormous interest in recent years due to the rapid growth of the power conversion efficiencies (PCE) from 3.8% in 2009 [1] to the current world record of 22.0% [2]. The organic-inorganic perovskite material has an ABX₃ structure and is typically comprised of an organic cation, A=methylammonium (MA) CH₃NH₃⁺; formamidinium (FA) CH₃(NH₂)NH₂⁺, a divalent metal, B = (Pb²⁺; Sn²⁺), and an anion X = (Cl⁻; Br⁻; I⁻). The perovskite material can be processed by various techniques including spin coating, dip coating, 2-step interdiffusion, chemical vapour deposition, thermal evaporation, that introduce perovskite solar cell as one of the most versatile photovoltaic (PV) technologies. The achieved high performances for perovskite solar cells have been attributed to exceptional material properties such as remarkably high absorption over the visible spectrum, low exciton binding energy, charge carrier diffusion lengths in the μm-range, a sharp optical band edge, and a tunable band gap from 1.1 to 2.3 eV by interchanging the above cations, metals, and/or halides [3]. One of the main strategies that are used to tune the optical and electrical properties, enhance the stability, and improve the performance of the perovskite devices is employing mixed halide, cations, and metals sites in the crystalline structure. In this work, CH₃NH₃PbI₃ perovskite is doped with Cs cation and used as the absorber layer of the perovskite device. The optical and structural properties of the absorber is characterized in the presence of Cs. Furthermore, the perovskite devices based on the doped absorber are fabricated and characterized.

2. Experimental Section

To fabricate solar cells, fluorine-doped tin oxide (FTO) substrates are patterned by an HCl solution (2 M in deionized water) and Zn powder. Then the etched substrates are ultra-sonicated in deionized water, acetone, ethanol, and isopropanol, each for 10 min, followed by drying at 100 °C, and subsequently treated by UV-ozone for 15 min. The cleaned FTO substrates are coated with a compact layer of TiO₂ by spin coating of a mild acidic solution of tetraisopropyl orthotitanate in ethanol (2000 RPM for 30 s), followed by annealing at 500 °C for 30 min. The mesoporous TiO₂ layer is deposited on the TiO₂ compact layer by spin coating (5000 RPM for 30 s) of the TiO₂ paste containing 20-nm-sized TiO₂ nanoparticles diluted in ethanol (2:7 weight ratio), and immediately dried at 70 °C for 30 min. Then, perovskite layer is deposited on the mesoporous TiO₂ layer. A poly(3 hexylthiophene)(P3HT) layer (10 mg/mL in anhydrous chlorobenzene) is spin-coated on the perovskite layer at 2000 RPM for 60 s. Finally, a 100-nm-thick Au cathode is deposited on it by a thermal evaporator with a shadow mask (Nanostructured Coatings Co, Iran).

In order to synthesize the perovskite absorber layer, one step solution method is used. CsCl, MAI, and PbI₂ are dissolved into a mixed solvent of DMF: DMSO (4 : 1, volume ratio). As CsCl is difficultly dissolved in the solvent mixture, the solution is heated at 70 °C for 24 h. The perovskite films are prepared with different CsCl concentration that are 0, 0.05, 0.1, and 0.2 M. 30µL of freshly prepared perovskite solutions was spin-coated on the mesoporous TiO₂ layer at 4000 rpm for 20 s. After a 4 s delay time of the spin coating process, a 240 µL of anhydrous chlorobenzene was quickly dropped at the substrate, then dried at 100 °C for 10 min. The colour of the annealed film changed from transparent to dark brown indicating the crystallization of the perovskite layer.

Figure 1 Schematic of the fabricated device structure.
3. Results and discussions
The SEM images of the surface of the deposited perovskite layers containing different amount of CsCl (0, 0.05, 0.1, 0.2 molar) in the precursor are presented in Figure 2.

As observed, more uniform layer is achieved when the concentration of CsCl in the precursor is 0.05M. Interestingly, the amount of the holes in this layer is fewer than the other films.

![SEM images of the surface of the perovskite films comprising different concentrations of CsCl in the precursor solution (0, 0.05, 0.1, 0.2 molar).](image)

To gain insight on the effect of Cs-substitution on the crystallization of the MAPbI₃ perovskite, a series of perovskite films with different Cs content are characterized using X-ray diffraction (XRD). Figure 3a shows the XRD patterns of CsₓMA₁₋ₓPbI₃ perovskite films with different Cs content. The sharp peaks located at 14.23, 28.57, 32 ° are attributed to (110), (220), (310) planes of the tetragonal structure of the perovskite, respectively. For clarity, Figure 3b shows a high resolution view of the (110) diffraction peak of the MA₁₋ₓCsₓPbI₃ samples. The peak location monotonically shifts from 14.23° to 14.29° with increasing CsCl content from 0 to 0.2 M due to the smaller Cs⁺ radius (1.81 Å) compared to that of MA⁺ (2.70 Å). It demonstrates that Cs cations are effectively integrated into the MAPbI₃ perovskite lattice and the increased intensity of the δ-phase CsPbI₃ indicates a substitution limit. This non-provskite yellow phase can lead the reduction of the PCE of the device.

![XRD spectra of the perovskite films comprising different concentrations of CsCl in the precursor solution, and (b) a high resolution view of the (110) diffraction peak of the MA₁₋ₓCsₓPbI₃ samples.](image)

The UV-Vis spectra of the pure and mixed perovskite films indicate an initial blue-shift of the absorption edge shown in Figure 4, occurs due to the Cs content enhancement.
Conclusion

In summary, the effect of the presence of CsCl on the crystalline, optical, and morphology of the CH$_3$NH$_3$PbI$_3$ perovskite films were investigated. It was shown that among all concentrations of CsCl, the best performance was achieved for the device with 0.05 M CsCl in the perovskite precursor solution.

Acknowledgements

The authors would like to acknowledge the financial support from the research department of Tarbiat Modares University (Research group of nano plasma photonic, IG-39704).

References

Table 1 summarizes the photovoltaic performance of the devices with different percentages of cesium chloride.

Table 1 Photovoltaic performance of the perovskite devices.

<table>
<thead>
<tr>
<th>Device</th>
<th>Voc</th>
<th>Isc</th>
<th>PCE</th>
<th>FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.66</td>
<td>11.2</td>
<td>3.21</td>
<td>0.43</td>
</tr>
<tr>
<td>0.05</td>
<td>0.68</td>
<td>12.15</td>
<td>4.64</td>
<td>0.56</td>
</tr>
<tr>
<td>0.1</td>
<td>0.55</td>
<td>6.97</td>
<td>1.87</td>
<td>0.48</td>
</tr>
<tr>
<td>0.2</td>
<td>0.45</td>
<td>5.94</td>
<td>1.25</td>
<td>0.46</td>
</tr>
</tbody>
</table>