کوانتش کانونیک میدان الکترومغناطیس در حضور یک تیغه نامتناهی ماده مغناطیس-دی الکتریک دوناهمسانگرد جاذب قرار داده شده بین دو رسانای کامل نامتناهی تخت و موازی

علي شوقی، مجید عموشاهی
دانشگاه اصفهان-گروه فیزیک

چکیده- با مدل سازی یک تیغه نامتناهی ماده مغناطیس-دی الکتریک جاذب و دو ناهمسانگرد، قرار داده شده بین دو رسانای نامتناهی تخت و موازی، یک کوانتش کانونیک از میدان الکترومغناطیس در حضور این تیغه بعمل می آید. قانون گوس و معادلات ماکسول به عنوان معادلات اول-لاگرانژ استخراج می شوند. معادلات اول-لاگرانژ نوسانگرهایی که تیغه مغناطیس-دی الکتریک را مدل سازی می کند معادلات ساختارمندی میدان الکترومغناطیس را بدست می دهند. تانسورهای نفوذ پذیری الکتریکی و مغناطیسی تیغه مغناطیس-دی الکتریک بر حسب تانسورهای جفت کننده تیغه مغناطیس-دی الکتریک و میدان الکترومغناطیس بدست می آید. بسط متغیرهای دینامیکی میدان الکترومغناطیس و ماده مغناطیسی-الکتریک بر حسب ویژه‌های ناحیه بین دو رسانا ارائه می شود و عملگرهای نرمالی میدان الکترومغناطیس و نوسانگرهای که ماهی دارد از مدل سازی کاننده معرفی می شوند.

کلید واژه‌ها- کوانتش کانونیک، تیغه مغناطیس-دی الکتریک دوناهمسانگرد، معادلات ساختارمندی، تانسورهای نفوذ پذیری، نوسانگرهای جفت کننده

Canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric slab between two parallel perfectly conducting plates

Ali Shoghi, Majid Amooshahi
Department of Physics, University of Isfahan

Abstract- Modeling a bi-anisotropic absorbing magneto-dielectric slab by two continuum collections of the space-time dependent harmonic oscillators, a fully canonical quantization of electromagnetic field is achieved in the presence of such a magneto-dielectric slab inserted between two parallel perfectly conducting plates. The Gauss and Maxwell’s laws are obtained as the classical Euler-Lagrange equations of the total system. Also the constitutive relations of the magneto-dielectric slab are obtained using the classical Euler-Lagrange equations of the harmonic oscillators modeling the magneto-dielectric slab. The electric and magnetic susceptibility tensors of the bi-anisotropic magneto-dielectric slab are expressed in terms of the coupling tensors that couple the electromagnetic field to the magneto-dielectric slab. The mode expansions of dynamical variables of the electromagnetic field and the magneto-dielectric slab are given and the ladder operators of the total system are introduced.

Keywords: Canonical quantization, Bi-anisotropic magneto-dielectric slab, Constitutive relations, Susceptibility tensors, Coupling tensors.
1. مقدمه

در سال‌های اخیر یک روش کوانتاشکمال کلا کاملا با استفاده از میان‌دانه‌های الکترومغناطیس در حضور ماده مغناطیسی الکترومغناطیسی تبدیل و جاذبه‌ای در رشته‌ای حسین می‌شود. [1-3] این روش ماده را با دو مجموعه پیوستار و مستقل از انتقال‌های هارمونیک سه بعدی مدل می‌کند. از این مجموعه‌ها قطیع می‌شود.

طی‌بر ماده و دیگر ام‌مغناطیسی نیز ماده را توصیف می‌کند. معادلات ماکسول و معادلات ساختار مردمی ماده با کمک معادلات اول-لاگرانژ کل سیستم بدست می‌آید. ناشورهای نفوذ پذیر الکتریکی و مغناطیسی ماده بر حسب ناشورهای جفت کننده ماده و میدان الکترومغناطیس بدست می‌آیند. قطیع های الکتریکی و مغناطیسی نیز پذیر ناشورهای جفت کننده ماده و میدان الکترومغناطیس و نوسانگرهای که ماده را مدل دارد می‌شود.

2. معادلات اوبر-لاگرانژ

لاگرانژ کل سیستم (میدان الکترومغناطیس و ماده مغناطیسی الکتریکی جاذب دوناهساکرگ) به صورت زیر پیشنهاد می‌شود:

\[
L(t) = \int_V d^3r \left[\frac{1}{2} \mathbf{E}^2 - \frac{1}{2} \mathbf{B}^2 - \frac{1}{2} \mathbf{M}^2 - \mathbf{F}_0 \mathbf{P} \right]
\]

که در آن \(V\) حجم بین دو رسانای کاملا نتخی و ماوری در شکل (1) می‌باشد. به ترتیب چگالی‌های لاگرانژی ماده، مغناطیسی الکتریکی، میدان الکترومغناطیسی و برهمکنش بین آنها است و به صورت زیر می‌شوند:

\[
I_s = \int_0^{+\infty} d\omega \sum_{i=1}^{2} \left[\frac{1}{2} \mathbf{\tilde{X}}_{\omega}^{(i)}(\tilde{r}, t) \cdot \mathbf{\tilde{X}}_{\omega}^{(i)}(\tilde{r}, t) \right]
\]

\[
I_{em} = \frac{1}{2} E_0 E^2 - \frac{P^2}{2\mu_0}.
\]

\[
I_{int} = \int_0^{+\infty} d\omega \sum_{i=1}^{3} \sum_{n,m} f_{n,m}^{i} (\omega, \tilde{r}) E_{n,m} (\tilde{r}, t) X_{\omega}^{(i)}(\tilde{r}, t)
\]

همچنین معادلات اوبر-لاگرانژ برای نوسانگرهایی که ماده را مدل می‌کند به صورت زیر بدست می‌آیند:

\[
\frac{\partial^2 \mathbf{X}_{\omega}^{(i)}(\tilde{r}, t)}{\partial t^2} + 2 \omega \frac{\partial \mathbf{X}_{\omega}^{(i)}(\tilde{r}, t)}{\partial t} = f_{i}^{(1)}(\omega, \tilde{r}) \cdot E(\tilde{r}, t) + g_{i}^{(1)}(\omega, \tilde{r}) \cdot B(\tilde{r}, t)
\]

این مقاله در صورتی دارد اعتبار است که در سایت www.arsi.ir قابل دسترسی باشد.
که در این رابطه بالا نویس 1 نشانگر ترکیبات است.

پاسخ معادله (8) به شکل زیر است:

\[\tilde{X}_o^{(i)}(\tilde{r}, t) = \tilde{X}_o^{(i)}(\tilde{r}, 0) \cos \omega t + \frac{\sin \omega t}{\omega} \frac{\tilde{X}_o^{(i)}(\tilde{r}, 0)}{\omega} \]

\[+ \int \frac{dt}{\omega} \sin(\omega t) \left\{ \int_{0}^{t} f_{j}(\tilde{r}, \tilde{t}) \cdot \tilde{E}(\tilde{r}, \tilde{t})' + g_{j}(\tilde{r}, \tilde{t}) \cdot \tilde{B}(\tilde{r}, \tilde{t})' \right\} \]

(9)

با چاپ‌گذاری (9) در روابط ساختارمندی به شکل زیر می‌شود:

\[\tilde{P}(\tilde{r}, t) = \tilde{P}_N(\tilde{r}, t) + \int \frac{dt}{\omega} \chi^{(1)}(\tilde{r}, |t| - |t'|) \cdot \tilde{E}(\tilde{r}, \pm t') \]

\[+ \chi^{(2)}(\tilde{r}, |t| - |t'|) \cdot \tilde{B}(\tilde{r}, \pm t') \]

\[+ \chi^{(3)}(\tilde{r}, |t| - |t'|) \cdot \tilde{B}(\tilde{r}, \pm t') \]

\[+ \chi^{(4)}(\tilde{r}, |t| - |t'|) \cdot \tilde{B}(\tilde{r}, \pm t') \]

(10)

علائم های مثبت و منفی به ترتیب برای پتانسیل تابع‌های پتانسیل حذف می‌شوند. با جایگذاری مجموعه \(f_{i}, g_{i}, i = 1, 2, 3, 4 \) در معادله (10) می‌توان پتانسیل تابع‌های پتانسیل حذف می‌شود.

که می‌تواند با نیروی الکتریکی و مغناطیسی نوشت.

\[M_N(\tilde{r}, t) + \int \frac{dt}{\omega} \chi^{(3)}(\tilde{r}, |t| - |t'|) \cdot \tilde{E}(\tilde{r}, \pm t') \]

\[+ \chi^{(4)}(\tilde{r}, |t| - |t'|) \cdot \tilde{B}(\tilde{r}, \pm t') \]

(11)

3- کوانش کاتونیک

در این بخش یک کوانش کاتونیک برای میدان الکترومغناطیسی و ماده مغناطیسی - الکتریکی به‌کار می‌رود. با استفاده از معادله (9) می‌توان پتانسیل اسکالر \(\phi \) را به کمک قانون گوس (5) از لگاریتمی ساختگی حذف کنیم. با استفاده از معادله (5) می‌باشد که می‌توان پتانسیل اسکالر را به‌کار بررسی حساب جبرای الکتریکی قطعی‌ترین قانون نوشت:

\[\phi(\tilde{r}, t) = -\frac{1}{\omega} \int_{0}^{t} d\tau' G(\tilde{r}, \tilde{r}') \tilde{V}(\tilde{r}', t) \cdot \tilde{P}(\tilde{r}, t) \]

(11)

این مقاله در سیستم مدار اعتماد است که در سایت www.opsi.ir قابل دسترسی باشد
\begin{align*}
\omega_n(k) &= C \sqrt{k_x^2 + k_y^2 + \frac{n \pi^2}{D}^2} \\
\mathbf{V}_{n,\lambda}(k, r) &= e_j(\lambda, n, r, \vec{k}) f_j(n, r, \lambda, \lambda, 1, 2, 3) \\
f_1(n, r) &= e_1 \exp(\vec{k} \cdot \vec{r}) \sin(n \pi \frac{x}{D}) \\
f_3(n, r) &= \exp(\vec{k} \cdot \vec{r}) \cos(n \pi \frac{x}{D})
\end{align*}

where \(k = 1.2 \) and \(\lambda = 1.2 \) in the case of an isotropic fiber. The momentum is conserved.

\begin{align*}
[a_{n,\lambda}(\vec{k}, t), a_{n,\lambda}^*(\vec{k}, t)] &= \delta_{\lambda,\lambda'} \delta_{m,n} \delta(\vec{k} - \vec{k}') \\
[b_{n,\lambda}(\omega, \vec{k}, t), b_{n,\lambda}^*(\omega', \vec{k}, t)] &= \delta_{\lambda,\lambda'} \\
&\times \delta_{\mu,\mu'} \delta(\omega - \omega') \delta(\vec{k} - \vec{k}')
\end{align*}

- Conclusion

In the case of a perfect dielectric fiber, the dispersion relation can be derived as:

\begin{align*}
\hat{A}(\vec{r}, t) &= \sum_{\lambda=1}^{n} \sum_{n=1}^{\infty} \int d^2 k \frac{h}{(2\pi)^2 D \omega_n(\vec{k})} e_0 \\
[a_{n,\lambda}(\vec{k}, t), \hat{\mathbf{V}}_{n,\lambda}(\vec{k}, \vec{r})] &= \delta_{\lambda,\lambda'} \\
[b_{n,\lambda}(\omega, \vec{k}, t), \hat{b}_{n,\lambda}^*(\omega', \vec{k}, \vec{r})] &= \delta_{\lambda,\lambda'} \\
&\times \delta_{\mu,\mu'} \delta(\omega - \omega') \delta(\vec{k} - \vec{k}')
\end{align*}

\begin{align*}
\hat{X}_\alpha(i, \vec{r}, t) &= \int d^2 k \frac{h}{(2\pi)^2 D \omega_n(\vec{k})} e_0 \\
\hat{\mathbf{Q}}_\alpha(i, \vec{r}, t) &= -i \sum_{\lambda=1}^{n} \sum_{n=1}^{\infty} \int d^2 k \frac{h \omega_n}{(2\pi)^2 D} \\
&\times \left[b_{n,\lambda}(\vec{k}, t) \bar{V}_{n,\lambda}(\vec{k}, \vec{r}) \\
&+ (b_{n,\lambda}^*)^*(\vec{k}, t) V_{n,\lambda}^*(\vec{k}, \vec{r}) \right]
\end{align*}

References:

222