کوانتش کانونیک میدان الکترومغناطیس در حضور یک تیغه نامتناهی ماده مغناطیسی-دی الکتریک دوناهمسانگرد جاذب قرار داده شده بین دو رسانایی کامل نامتناهی تخت و موازی

علي شوقی، مجيد عموشاهی
دانشگاه اصفهان-گروه فیزیک

چکیده- با مدل سازی یک تیغه نامتناهی ماده مغناطیسی-دی الکتریک جاذب و دو ناهمسانگرد، قرار داده شده بین دو رسانایی کامل نامتناهی تخت و موازی، یک کوانتش کانونیک از میدان الکترومغناطیس در حضور این تیغه بعمل می‌آید. قانون گوس و معادلات ماکسول به عنوان معادلات اولر-لاگرانژ استخراج می‌شوند. معادلات اولر-لاگرانژ نوسانگرها که تیغه مغناطیسی-دی الکتریک را مدل سازی می‌کنند معادلات ساختارمندی تیغه مغناطیسی-دی الکتریک را بدست می‌دهند. تانسورهای نفوذپذیری الکتریکی و مغناطیسی مدل سازی تیغه مغناطیسی-دی الکتریک را به حساب می‌کنند. تانسورهای جفت کننده مدل سازی میدان الکترومغناطیس و ماده مغناطیسی-دی الکتریک را به حساب می‌برند. در فاصله بین دو رسانایی کامل نامتناهی میدان الکترومغناطیسی نشان می‌دهد. کلید واژه‌ها- کوانتش کانونیک، تیغه مغناطیسی-دی الکتریک دوناهمسانگرد، معادلات ساختارمندی، تانسورهای نفوذپذیری، تانسورهای جفت کننده

 Canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric slab between two parallel perfectly conducting plates

Ali Shoghi, Majid Amooshahi
Department of Physics, University of Isfahan

Abstract- Modeling a bi-anisotropic absorbing magneto-dielectric slab by two continuum collections of the space-time dependent harmonic oscillators, a fully canonical quantization of electromagnetic field is achieved in the presence of such a magneto-dielectric slab inserted between two parallel perfectly conducting plates. The Gauss and Maxwell’s laws are obtained as the classical Euler-Lagrange equations of the total system. Also the constitutive relations of the magneto-dielectric slab are obtained using the classical Euler-Lagrange equations of the harmonic oscillators modeling the magneto-dielectric slab. The electric and magnetic susceptibility tensors of the bi-anisotropic magneto-dielectric slab are expressed in terms of the coupling tensors that couple the electromagnetic field to the magneto-dielectric slab. The mode expansions of dynamical variables of the electromagnetic field and the magneto-dielectric slab are given and the ladder operators of the total system are introduced.

Keywords: Canonical quantization, Bi-anisotropic magneto-dielectric slab, Constitutive relations, Susceptibility tensors, Coupling tensors.
به ترتیب میدان‌های الکتریکی و مغناطیسی بحث می‌کنیم که بر اساس دانش‌هایی که در دل مسئله‌ای هستند که توسط پیام‌های الکتریکی و مغناطیسی ایجاد می‌شوند. در صفحه گیری اساسی از جدول‌های الکتریکی و مغناطیسی، جفت‌کننده میدان الکترومغناطیسی و ماده مغناطیسی، رابطه بین دو صفحه، رابطه بین نوسان‌های الکترومغناطیسی، ماده مغناطیسی، و ماده مغناطیسی، رابطه بین دو صفحه و زیربنایی از یک اکثریت ماده بلند می‌شود.

۱- مقدمه
در حال حاضر، اکثریت کشورهای جهان از تکنولوژی‌های الکتریکی و مغناطیسی استفاده می‌کنند. این تکنولوژی‌ها بر اساس رابطه‌های الکتریکی و مغناطیسی در حوزه‌های مختلفی از علوم و فناوری استفاده می‌شود. در این رشته مطالعه، به مطالعه و مستقیم نوسان‌های الکترومغناطیسی، که به ترتیب مدل‌هایی می‌باشند، از این اکثریت ماده را بیش از پیش طبیعی می‌دانند. به میزانی که ماده به کمک مطالعات اوپن-لاگرانژ کل سیستمی بهتر استفاده می‌شود. نتیجه‌گیری‌های الکتریکی و مغناطیسی، ماده بر حسب نوسان‌های جفت‌کننده ماده و سیستم الکترومغناطیسی، ماده را به صورت زیر پیشنهاد می‌شود:

$$L(t)=\int V L(t) dt + l_{em} + l_{int} \cdot$$

که در این حجم V جمعیت جواب دو رسانای کاملاً پنهانی در سیستم‌ها به ترتیب جفت‌کننده الکتریکی و ماده الکترومغناطیسی، که در این روش ماده را به صورت زیر تعریف می‌شود:

$$P(r,t) = \int_0^\infty \frac{\omega^2}{c^2} \sum_{i=1}^2 \left[f_i(o,\vec{r}) \cdot \vec{X}_i^{(1)}(r,t) + g_i(o,\vec{r}) \cdot \vec{X}_i^{(2)}(r,t) \right]$$

همچنین معادلات اوپن-لاگرانژ برای نوسان‌هایسیستمی که ماده را مدل‌سازی می‌کنند به صورت زیر گزینده است:

$$\vec{X}_i^{(1)}(r,t) + \omega^2 \vec{X}_i^{(2)}(r,t) = f_i(o,\vec{r}) \cdot \vec{E}(r,t) + g_i(o,\vec{r}) \cdot \vec{B}(r,t).$$

۲- معادلات اوپن-لاگرانژ
لاگرانژ کل سیستم (ماده الکترومغناطیسی و ماده مغناطیسی) به صورت زیر راه‌اندازی می‌شود:

$$L(t)=\int V L(t) dt + l_{em} + l_{int} \cdot$$

که در این حجم V جمعیت جواب دو رسانای کاملاً پنهانی در سیستم‌ها به ترتیب جفت‌کننده الکتریکی و ماده الکترومغناطیسی، که در این روش ماده را به صورت زیر تعریف می‌شود:

$$P(r,t) = \int_0^\infty \frac{\omega^2}{c^2} \sum_{i=1}^2 \left[f_i(o,\vec{r}) \cdot \vec{X}_i^{(1)}(r,t) + g_i(o,\vec{r}) \cdot \vec{X}_i^{(2)}(r,t) \right]$$

همچنین معادلات اوپن-لاگرانژ برای نوسان‌هایسیستمی که ماده را مدل‌سازی می‌کنند به صورت زیر گزینده است:

$$\vec{X}_i^{(1)}(r,t) + \omega^2 \vec{X}_i^{(2)}(r,t) = f_i(o,\vec{r}) \cdot \vec{E}(r,t) + g_i(o,\vec{r}) \cdot \vec{B}(r,t).$$

این مقاله در صورتی دارای اعتبار است که در سایت www.opsi.ir قابل دسترسی باشد.
که در این رابطه بالا نویس I نشانگر ترنتاهه است.

پاسخ معادله (8) به شکل زیر است:

$$
\bar{\mathbf{X}}_0^{(i)}(s,t) = \bar{\mathbf{X}}_0^{(i)}(s,0) \cos \omega t + \frac{\sin \omega t}{\omega} \dot{\bar{\mathbf{X}}}_0^{(i)}(s,0)
$$

$$
+ \int_s^t dt' \sin \omega (t-t') \left[\mathbf{J}_f^{(i)}(s,t') \cdot \bar{\mathbf{E}}(s,t') + g_i^{(i)}(s,t') \cdot \mathbf{B}(s,t') \right].
$$

(9)

با چاپ‌گذاری (9) در (7) روابط ساختارمندی به شکل زیر مشاهده می‌شوند:

$$
\bar{\mathbf{P}}(s,t) = \bar{\mathbf{P}}_0(s,t) + \int_s^t dt' \chi^{(i)}(s,t') \mathbf{M}(s,t') + \chi^{(i)}(s,t') \mathbf{M}(s,t') \mathbf{B}(s,t').
$$

(10)

علامت های مشابه منفی به پارامتر برای λ استفاده شده و تناژور های λ تناژورهای پذیرفتاری ماده هستند. در مرحله (9) بر حسب تناژورهای جفت کننده $\mathbf{M}_0, \bar{\mathbf{P}}_0$ معرف شده اند. در ماده (10) بر حسب تناژورهای جفت کننده $\mathbf{M}_0, \bar{\mathbf{P}}_0$ و تناژورهای جفت کننده $\mathbf{f}_i, g_i , i = 1,2$ می‌باشد که به ترتیب \mathbf{T} و \mathbf{T} نیازمندی که ماده را مدل سازی می‌کند بسته می‌شود.

3- کوانش کاتونیک

در این بخش یک کوانش کاتونیک برای ماده الکترومغناطیسی مطرح می‌شود. کوانش کاتونیک انواعی از کوانش‌های الکترومغناطیسی پتانسیل برداری \mathbf{A} است. با استفاده از چگالی الکترونیت $\bar{\mathbf{X}}_0^{(i)}(s,t)$ می‌توان پتانسیل اسکار کرده که با کمک قانون گوس (5) از الکترونیتی حذف می‌کنیم. با استفاده از قانون گوس (5) می‌توان پتانسیل اسکار کرده که با مدل سازی را بر حسب حسه کاتونیک الکتروتکیلی این مدل سازی انجام داده می‌شود.

$$
\phi(s,t) = - \frac{1}{\varepsilon_0} \int_V d^3 r \mathbf{G}(s,t) \mathbf{V} \cdot \bar{\mathbf{P}}(s,t).
$$

(11)

منابع

این مقاله در سیوآر دارت اعداد اصلی به سایت www.opsi.ir نگاشته شده است.
اثر و \(\omega_n(k) \) است و به \(\hat{V}_{n,\lambda}(k, r) \) می‌شود طبیعتی وزن برداری باشد:

\[
 [V_{n,\lambda}(k, r)]_j = e_{j}(\lambda, n, k, r) f_n(r, \lambda) \quad j, \lambda = 1,2,3
\]

\[
 f_1(r, \lambda) = f_2(r, \lambda) = -i \exp(i k \cdot \hat{r}) \sin(\frac{n \pi \lambda}{D})
\]

\[
 f_3(r, \lambda) = \exp(i k \cdot \hat{r}) \cos(\frac{n \pi \lambda}{D})
\]

که در آن \(k \) برای هر دو بردار واحد \(\hat{k} \) وارد مقدار هستند و \(\lambda \) به بردار واحد عدوم هستند.

\[
 \hat{e}(3, n, k, \hat{k}) = \frac{k^{\perp}}{\sqrt{k^{\perp} + k^{\perp} + n^2 \pi^2 \frac{D}{D^2}}}
\]

در سمت بالا (17) علماکرهای نردنی متغیر های دینامیکی میدان الکترومغناطیسی و ماده در روابط جابجایی می‌باشد چنانکه در مراجع (18) مو می‌باشد.

\[
 [a_{n,\lambda}(k), a_{n,\lambda}^*(k), t] = \delta_{\lambda,\lambda'} \delta_{n,n'} \delta(k - k')
\]

\[
 [b_{n,\lambda}(\omega, k), b_{n,\lambda}^*(\omega, k), t] = \delta_{\lambda,\lambda'} \delta_{n,n'} \delta(\omega - \omega') \delta(k - k')
\]

نتیجه گیری

در این مقاله با توجه به روش ارائه در مراجع یک کوانش کامپیوتری به کمک الکترومغناطیسی در حضور یک نیرو نامشتهای ماده الکترومغناطیسی-الکتریک جادو دو نمونه‌گر در کانال داده شده بین دو رسانای کامل تخت و موازی ارائه شده است.

مراجع