Abstract- Recently, organo-metal halide perovskite solar cells based on planar architecture have demonstrated an exceptional progress. These structures show lower defect density, high carrier mobility, and broader absorption spectra in compare to other solar cells. In this work a 3D finite element method (FEM) technique is used to simulate a planer perovskite solar cell. Coupled electrical-optical modeling is constructed to fully characterize the proposed device. We investigate variation of short circuit current (J_{sc}), open circuit voltage (V_{oc}) and fill factor (FF) in different temperature ranges (280-340 K). Also, the effect of material replacement (Cu$_2$O material instead of CuSCN), as hole transport material (HTM), has been investigated on solar cell performance. It is caused to change J_{sc}. Based on the result the best PCE is 14.32%. These simulation results open up a way to find accurate design parameters in solar cell with best performance.

Keywords: Solar cell, perovskite, temperature, 3D simulation and HTM
1 Introduction

Nowadays, Solid-state organo-metal halide perovskite solar cells (PSCs) have revolutionized solar cell industry. This new kind of solar cell such as MAPbX3 (MA= CH3NH3+; X = Cl−, Br−, I) has demonstrated an exceptional progress in solar cell power conversion efficiency (PCEs) from 3.81% for MAPbI3 to over 20% [1, 2, 4]. High carrier mobility [3, 4], long carrier diffusion length [3, 4], and long absorption coefficient [3, 4] are promising characteristics of perovskite materials.

Device simulation gives a better description of physical mechanisms in solar cells. However, the number of reported simulations in this field are few. Therefore, in this work we present a three-dimensional (3D) PSC based on the finite-element method (FEM) from the “COMSOL Multiphysics” software package. Firstly, we validate our simulation results with previous experimental investigations [5]. Then, the effect of temperature variation and hole transport material (HTM) changes, are examined. It is shown that these variations, have an effective role on design of high PCE PSCs.

2 Theory and Modelling

A schematic of the solar cell structure has been represented in Fig. 1. As it can be seen in this figure, a n-i-p solar cell with TiO2 n-type layer as electron transport material (ETM) layer, CH3NH3PbI3 as intrinsic layer and CuSCN p-type layer as HTM layer, is considered. Firstly, presented model is validated with previously published work [5]. Proposed n-i-p PSC structural parameters are taken as follow: a width of 250 nm and a depth of 250 nm. Also, the structure includes five layers of: Air (500 nm thick), FTO (50 nm), TiO2(90 nm), CH3NH3 PbI3(200 nm), CuSCN (600 nm,) and Au (100 nm), (see Fig. 1). Generally, our presented model consists of two parts of optical and electrical.

2.1 Optical Model

The Wave Optic module has been used in order to solve Maxwell’s equations in the frequency domain. It is expressed as follow:

\[\nabla \times (\nabla \times E) - K_0^2 \varepsilon E = 0 \]

(1)

where, \(E \) is electric field, \(k_0 \) is wave-vector and \(\varepsilon \) is Complex Relative Permittivity \(\varepsilon = (n-ik)^2 \), which is a function of wavelength \(\lambda \).

With known amount of \(E \), the photo-generation rate per each wavelength \((G_{\text{photo}}(\lambda)) \), can be calculated as follow:

\[G_{\text{photo}}(\lambda) = \frac{\varepsilon}{2h} |E| \]

(2)

where \(h \) is the plank constant, \(\varepsilon'' \) is the imaginary part of the \(\varepsilon \). For \(G_{\text{photo}}(\lambda) \) calculation, AM1.5G was used as the input power. The complex refractive indexes of FTO, CuSCN, TiO2, CH3NH3PbI3 and Au are taken from previously measured data [6-9]. Total generation rate \((G_{\text{tot}}) \) is calculated by integration over the wavelength ranges. The results of these calculations have been presented in Fig. 2.

2.2 Electrical model

To evaluate current density-voltage \((J-V) \) characteristics, semiconductor module from COMSOL software, is used. This module is based on solving Poisson and Continuity equations. It is expressed as below:

\[\nabla.(\varepsilon \nabla \phi) = -\rho \]

(3)

\[\frac{\partial n}{\partial t} = -\nabla j_n + G_n - U_n \]

(4)

\[\frac{\partial p}{\partial t} = -\nabla j_p + G_p - U_n \]

(5)
where ϕ is electrostatic potential. q is electron charge. ε_s is semiconductor permittivity, G_n and G_p are total generation rates, U_n and U_p are recombination rates of electron and holes respectively. ρ is a charge density, J_n and J_p are current density of electron and hole. Calculated amount of G_{tot} in wave optic module, is replaced with G_n and G_p in this part. The numerical parameters used in this part, are provided in Table1. All the parameters in Table 1 have been selected according to valid theoretical and experimental researches [3, 7, 10].

Table 1. The electrical parameters of PSC [3, 8, 11]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TiO$_2$</th>
<th>CH$_3$NH$_3$PbI$_3$</th>
<th>CuSCN</th>
<th>Cu$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_s</td>
<td>9</td>
<td>6.5</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>N_e (cm$^{-3}$)</td>
<td>1×10^{19}</td>
<td>1.66×10^{19}</td>
<td>1.79×10^{19}</td>
<td>1×10^{19}</td>
</tr>
<tr>
<td>N_h (cm$^{-3}$)</td>
<td>1×10^{19}</td>
<td>5.41×10^{19}</td>
<td>2.51×10^{19}</td>
<td>1×10^{19}</td>
</tr>
<tr>
<td>μ_e/μ_p (cm2/V.s)</td>
<td>2/1</td>
<td>50/50</td>
<td>1×10^{-3}</td>
<td>0.01</td>
</tr>
<tr>
<td>E_F (eV)</td>
<td>4</td>
<td>3.93</td>
<td>1.9</td>
<td>3.4</td>
</tr>
<tr>
<td>E_g (eV)</td>
<td>3.2</td>
<td>1.55</td>
<td>3.4</td>
<td>2.22</td>
</tr>
<tr>
<td>τ_e/τ_h (ns)</td>
<td>5/5</td>
<td>8/8</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>N_e (cm$^{-3}$)</td>
<td>-</td>
<td>5×10^{13}</td>
<td>5×10^{14}</td>
<td>5×10^{15}</td>
</tr>
<tr>
<td>N_h (cm$^{-3}$)</td>
<td>5×10^{19}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3. Result and discussion

The current density-voltage (J-V) characteristic of the perovskite solar cell in 300 K, has been shown in Fig. 3. As it is depicted, the maximum PCE ($\text{PCE}=FF*J_sc*V_oc$), short-circuit current density (J_sc), open-circuit voltage (V_oc) and fill factor ($FF=MPP/(J_sc*V_oc)$), have been reached to 14.32%, 18.77 (mA/cm2), 0.98 (V) and 0.78 respectively. The PCE of the simulated PSC shows a good matching with experimental result [5]. In addition, in this work CuSCN is replaced by a Cu$_2$O as HTM layer [11]. The Complex refractive index of Cu$_2$O is taken from [12]. Electrical parameters of Cu$_2$O have been listed in Table 1. In Fig. 4, the current density-voltage characteristics of the simulated perovskite solar cell, (with two kinds of inorganic HTMs (Cu$_2$O, CuSCN)), have been shown.

![Image](image1.png)

Figure 2: G_{tot} in PSC

As it is shown in the results, the J_{sc} is decreased when the Cu$_2$O is used instead of CuSCN. This is due to total generation of carriers in perovskite layer. By using the Cu$_2$O layer, due to the decrease of interface reflectivity of this layer and perovskite layer for portion of input frequency range (based on material characteristic’s), less amount of incident optical field is reflected to perovskite layer. As a result, the carrier generation is decreased in perovskite layer.

Another study is examination of temperature effect on solar cell performance. Fig. 6 depicts the effect of temperature (T) on J-V characteristics of the PSC. As it can be seen when the T increases from...
280 K to 340 K, the V_{oc} decreases while the J_{sc} remains roughly intact. This is mainly because of the V_{oc} dependency to the T. This relation can be found as below [13]:

$$V_{oc} = \frac{kT}{q} \ln \left(\frac{Jsc}{J_0(T)} \right)$$

(6)

where k is Boltzmann constant and J_0 is a dark current density, which related to T, as below:

$$J_0 \approx B'T^3 \exp \left(-\frac{E_{g0}}{kT} \right)$$

(7)

where B' is a constant, that independent of T. So, temperature effect on the V_{oc} in solar cell is calculated as follow:

$$\frac{dV_{oc}}{dT} = -\left(\frac{V_{g0} - V_{oc}}{T} \right) + 3V_T$$

(8)

Figure 5: J-V curve of PSC as a function of temperature.

3 Conclusion

In this work, 3D FEM simulation of PSC was performed. It causes to achieve more accurate results in light propagation and electrical performance of PSCs. It was shown that, by replacing Cu$_2$O with CuSCN as HTM layer, the PCE is changed. In addition, as the temperature increased, due to V_{oc} reduction, the PCE of PSC is decreased.

References

